Alessandro Colombo, Mario Sauppe, Andre Al Haddad, Kartik Ayyer, Morsal Babayan, Rebecca Boll, Ritika Dagar, Simon Dold, Thomas Fennel, Linos Hecht, Gregor Knopp, Katharina Kolatzki, Bruno Langbehn, Filipe R. N. C. Maia, Abhishek Mall, Parichita Mazumder, Tommaso Mazza, Yevheniy Ovcharenko, Ihsan Caner Polat, Dirk Raiser, Julian C. Schäfer-Zimmermann, Kirsten Schnorr, Marie Louise Schubert, Arezu Sehati, Jonas A. Sellberg, Björn Senfftleben, Zhou Shen, Zhibin Sun, Pamela H. W. Svensson, Paul Tümmler, Sergey Usenko, Carl Frederic Ussling, Onni Veteläinen, Simon Wächter, Noelle Walsh, Alex V. Weitnauer, Tong You, Maha Zuod, Michael Meyer, Christoph Bostedt, Davide E. Galli, Minna Patanen, Daniela Rupp
{"title":"SPRING是一种有效、可靠的单粒子相干衍射成像图像重建框架","authors":"Alessandro Colombo, Mario Sauppe, Andre Al Haddad, Kartik Ayyer, Morsal Babayan, Rebecca Boll, Ritika Dagar, Simon Dold, Thomas Fennel, Linos Hecht, Gregor Knopp, Katharina Kolatzki, Bruno Langbehn, Filipe R. N. C. Maia, Abhishek Mall, Parichita Mazumder, Tommaso Mazza, Yevheniy Ovcharenko, Ihsan Caner Polat, Dirk Raiser, Julian C. Schäfer-Zimmermann, Kirsten Schnorr, Marie Louise Schubert, Arezu Sehati, Jonas A. Sellberg, Björn Senfftleben, Zhou Shen, Zhibin Sun, Pamela H. W. Svensson, Paul Tümmler, Sergey Usenko, Carl Frederic Ussling, Onni Veteläinen, Simon Wächter, Noelle Walsh, Alex V. Weitnauer, Tong You, Maha Zuod, Michael Meyer, Christoph Bostedt, Davide E. Galli, Minna Patanen, Daniela Rupp","doi":"10.1038/s41524-025-01661-y","DOIUrl":null,"url":null,"abstract":"<p>Coherent Diffraction Imaging (CDI) is an experimental technique to image isolated structures by recording the scattered light. The sample density can be recovered from the scattered field through a Fourier Transform operation. However, the phase of the field is lost during the measurement and has to be algorithmically retrieved. Here we present SPRING, an analysis framework tailored to X-ray Free Electron Laser (XFEL) single-shot single-particle diffraction data that implements the Memetic Phase Retrieval method to mitigate the shortcomings of conventional algorithms. We benchmark the approach on data acquired in two experimental campaigns at SwissFEL and European XFEL. Results reveal unprecedented stability and resilience of the algorithm’s behavior on the input parameters, and the capability of identifying the solution in conditions hardly treatable with conventional methods. A user-friendly implementation of SPRING is released as open-source software, aiming at being a reference tool for the CDI community at XFEL and synchrotron facilities.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"202 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SPRING, an effective and reliable framework for image reconstruction in single-particle Coherent Diffraction Imaging\",\"authors\":\"Alessandro Colombo, Mario Sauppe, Andre Al Haddad, Kartik Ayyer, Morsal Babayan, Rebecca Boll, Ritika Dagar, Simon Dold, Thomas Fennel, Linos Hecht, Gregor Knopp, Katharina Kolatzki, Bruno Langbehn, Filipe R. N. C. Maia, Abhishek Mall, Parichita Mazumder, Tommaso Mazza, Yevheniy Ovcharenko, Ihsan Caner Polat, Dirk Raiser, Julian C. Schäfer-Zimmermann, Kirsten Schnorr, Marie Louise Schubert, Arezu Sehati, Jonas A. Sellberg, Björn Senfftleben, Zhou Shen, Zhibin Sun, Pamela H. W. Svensson, Paul Tümmler, Sergey Usenko, Carl Frederic Ussling, Onni Veteläinen, Simon Wächter, Noelle Walsh, Alex V. Weitnauer, Tong You, Maha Zuod, Michael Meyer, Christoph Bostedt, Davide E. Galli, Minna Patanen, Daniela Rupp\",\"doi\":\"10.1038/s41524-025-01661-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Coherent Diffraction Imaging (CDI) is an experimental technique to image isolated structures by recording the scattered light. The sample density can be recovered from the scattered field through a Fourier Transform operation. However, the phase of the field is lost during the measurement and has to be algorithmically retrieved. Here we present SPRING, an analysis framework tailored to X-ray Free Electron Laser (XFEL) single-shot single-particle diffraction data that implements the Memetic Phase Retrieval method to mitigate the shortcomings of conventional algorithms. We benchmark the approach on data acquired in two experimental campaigns at SwissFEL and European XFEL. Results reveal unprecedented stability and resilience of the algorithm’s behavior on the input parameters, and the capability of identifying the solution in conditions hardly treatable with conventional methods. A user-friendly implementation of SPRING is released as open-source software, aiming at being a reference tool for the CDI community at XFEL and synchrotron facilities.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"202 1\",\"pages\":\"\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01661-y\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01661-y","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
SPRING, an effective and reliable framework for image reconstruction in single-particle Coherent Diffraction Imaging
Coherent Diffraction Imaging (CDI) is an experimental technique to image isolated structures by recording the scattered light. The sample density can be recovered from the scattered field through a Fourier Transform operation. However, the phase of the field is lost during the measurement and has to be algorithmically retrieved. Here we present SPRING, an analysis framework tailored to X-ray Free Electron Laser (XFEL) single-shot single-particle diffraction data that implements the Memetic Phase Retrieval method to mitigate the shortcomings of conventional algorithms. We benchmark the approach on data acquired in two experimental campaigns at SwissFEL and European XFEL. Results reveal unprecedented stability and resilience of the algorithm’s behavior on the input parameters, and the capability of identifying the solution in conditions hardly treatable with conventional methods. A user-friendly implementation of SPRING is released as open-source software, aiming at being a reference tool for the CDI community at XFEL and synchrotron facilities.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.