通过机器学习加速可扩展蒙特卡罗模拟揭示高熵合金的纳米结构

IF 11.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Xianglin Liu, Kai Yang, Yongxiang Liu, Fanli Zhou, Dengdong Fan, Zongrui Pei, Pengxiang Xu, Yonghong Tian
{"title":"通过机器学习加速可扩展蒙特卡罗模拟揭示高熵合金的纳米结构","authors":"Xianglin Liu, Kai Yang, Yongxiang Liu, Fanli Zhou, Dengdong Fan, Zongrui Pei, Pengxiang Xu, Yonghong Tian","doi":"10.1038/s41524-025-01762-8","DOIUrl":null,"url":null,"abstract":"<p>First-principles Monte Carlo (MC) simulations at finite temperatures are computationally prohibitive for large systems due to the high cost of quantum calculations and poor parallelizability of sequential Markov chains in MC algorithms. We introduce scalable Monte Carlo at eXtreme (SMC-X), a generalized checkerboard algorithm designed to accelerate MC simulation with arbitrary short-range interactions, including machine learning potentials, on modern accelerator hardware. The GPU implementation, SMC-GPU, harnesses massive parallelism to enable billion-atom simulations when combined with machine-learning surrogates of density functional theory (DFT). We apply SMC-GPU to explore nanostructure evolution in two high-entropy alloys, FeCoNiAlTi and MoNbTaW, revealing diverse morphologies including nanoparticles, 3D-connected NPs, and disorder-stabilized phases. We quantify their size, composition, and morphology, and simulate an atom-probe tomography (APT) specimen for direct comparison with experiments. Our results highlight the potential of large-scale, data-driven MC simulations in exploring nanostructure evolution in complex materials, opening new avenues for computationally guided alloy design.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"15 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revealing nanostructures in high-entropy alloys via machine-learning accelerated scalable Monte Carlo simulation\",\"authors\":\"Xianglin Liu, Kai Yang, Yongxiang Liu, Fanli Zhou, Dengdong Fan, Zongrui Pei, Pengxiang Xu, Yonghong Tian\",\"doi\":\"10.1038/s41524-025-01762-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>First-principles Monte Carlo (MC) simulations at finite temperatures are computationally prohibitive for large systems due to the high cost of quantum calculations and poor parallelizability of sequential Markov chains in MC algorithms. We introduce scalable Monte Carlo at eXtreme (SMC-X), a generalized checkerboard algorithm designed to accelerate MC simulation with arbitrary short-range interactions, including machine learning potentials, on modern accelerator hardware. The GPU implementation, SMC-GPU, harnesses massive parallelism to enable billion-atom simulations when combined with machine-learning surrogates of density functional theory (DFT). We apply SMC-GPU to explore nanostructure evolution in two high-entropy alloys, FeCoNiAlTi and MoNbTaW, revealing diverse morphologies including nanoparticles, 3D-connected NPs, and disorder-stabilized phases. We quantify their size, composition, and morphology, and simulate an atom-probe tomography (APT) specimen for direct comparison with experiments. Our results highlight the potential of large-scale, data-driven MC simulations in exploring nanostructure evolution in complex materials, opening new avenues for computationally guided alloy design.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01762-8\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01762-8","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

有限温度下的第一性原理蒙特卡罗(MC)模拟由于量子计算的高成本和MC算法中顺序马尔可夫链的并行性差,在计算上对大型系统是禁止的。我们介绍了可扩展的蒙特卡罗极限(SMC-X),一种通用的棋盘算法,旨在加速MC模拟与任意短程相互作用,包括机器学习潜力,在现代加速器硬件上。GPU实现,SMC-GPU,利用大规模并行性,结合密度泛函理论(DFT)的机器学习替代品,实现十亿原子模拟。我们利用SMC-GPU研究了两种高熵合金FeCoNiAlTi和MoNbTaW的纳米结构演变,揭示了包括纳米颗粒、3d连接NPs和无序稳定相在内的多种形态。我们量化了它们的大小、组成和形态,并模拟了原子探针断层扫描(APT)标本,以便与实验进行直接比较。我们的研究结果强调了大规模、数据驱动的MC模拟在探索复杂材料纳米结构演变方面的潜力,为计算指导的合金设计开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Revealing nanostructures in high-entropy alloys via machine-learning accelerated scalable Monte Carlo simulation

Revealing nanostructures in high-entropy alloys via machine-learning accelerated scalable Monte Carlo simulation

First-principles Monte Carlo (MC) simulations at finite temperatures are computationally prohibitive for large systems due to the high cost of quantum calculations and poor parallelizability of sequential Markov chains in MC algorithms. We introduce scalable Monte Carlo at eXtreme (SMC-X), a generalized checkerboard algorithm designed to accelerate MC simulation with arbitrary short-range interactions, including machine learning potentials, on modern accelerator hardware. The GPU implementation, SMC-GPU, harnesses massive parallelism to enable billion-atom simulations when combined with machine-learning surrogates of density functional theory (DFT). We apply SMC-GPU to explore nanostructure evolution in two high-entropy alloys, FeCoNiAlTi and MoNbTaW, revealing diverse morphologies including nanoparticles, 3D-connected NPs, and disorder-stabilized phases. We quantify their size, composition, and morphology, and simulate an atom-probe tomography (APT) specimen for direct comparison with experiments. Our results highlight the potential of large-scale, data-driven MC simulations in exploring nanostructure evolution in complex materials, opening new avenues for computationally guided alloy design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信