{"title":"用于温度相关热电性质的可推广和无标记推理的物理信息神经算子","authors":"Hyeonbin Moon, Songho Lee, Wabi Demeke, Byungki Ryu, Seunghwa Ryu","doi":"10.1038/s41524-025-01769-1","DOIUrl":null,"url":null,"abstract":"<p>Accurate characterization of temperature-dependent thermoelectric properties (TEPs), such as thermal conductivity and the Seebeck coefficient, is essential for modeling and design of thermoelectric devices. However, nonlinear temperature dependence and coupled transport behavior make forward simulation and inverse identification challenging under sparse measurements. We present a physics-informed machine learning framework combining physics-informed neural networks (PINN) and neural operators (PINO) for solving forward and inverse problems in thermoelectric systems. PINN enables field reconstruction and property inference by embedding governing equations into the loss function, while PINO generalizes across materials without retraining. Trained on simulated data for 20 p-type materials and tested on 60 unseen materials, PINO accurately infers TEPs using only sparse temperature and voltage data. This framework provides a scalable, data-efficient, and generalizable solution for thermoelectric property identification, facilitating high-throughput screening and inverse design of advanced thermoelectric materials.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"21 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physics-informed neural operators for generalizable and label-free inference of temperature-dependent thermoelectric properties\",\"authors\":\"Hyeonbin Moon, Songho Lee, Wabi Demeke, Byungki Ryu, Seunghwa Ryu\",\"doi\":\"10.1038/s41524-025-01769-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Accurate characterization of temperature-dependent thermoelectric properties (TEPs), such as thermal conductivity and the Seebeck coefficient, is essential for modeling and design of thermoelectric devices. However, nonlinear temperature dependence and coupled transport behavior make forward simulation and inverse identification challenging under sparse measurements. We present a physics-informed machine learning framework combining physics-informed neural networks (PINN) and neural operators (PINO) for solving forward and inverse problems in thermoelectric systems. PINN enables field reconstruction and property inference by embedding governing equations into the loss function, while PINO generalizes across materials without retraining. Trained on simulated data for 20 p-type materials and tested on 60 unseen materials, PINO accurately infers TEPs using only sparse temperature and voltage data. This framework provides a scalable, data-efficient, and generalizable solution for thermoelectric property identification, facilitating high-throughput screening and inverse design of advanced thermoelectric materials.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01769-1\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01769-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Physics-informed neural operators for generalizable and label-free inference of temperature-dependent thermoelectric properties
Accurate characterization of temperature-dependent thermoelectric properties (TEPs), such as thermal conductivity and the Seebeck coefficient, is essential for modeling and design of thermoelectric devices. However, nonlinear temperature dependence and coupled transport behavior make forward simulation and inverse identification challenging under sparse measurements. We present a physics-informed machine learning framework combining physics-informed neural networks (PINN) and neural operators (PINO) for solving forward and inverse problems in thermoelectric systems. PINN enables field reconstruction and property inference by embedding governing equations into the loss function, while PINO generalizes across materials without retraining. Trained on simulated data for 20 p-type materials and tested on 60 unseen materials, PINO accurately infers TEPs using only sparse temperature and voltage data. This framework provides a scalable, data-efficient, and generalizable solution for thermoelectric property identification, facilitating high-throughput screening and inverse design of advanced thermoelectric materials.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.