最佳三维化学成像与多模态电子断层扫描

IF 11.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Jason Manassa, William Millsaps, Jonathan Schwartz, Robert Hovden
{"title":"最佳三维化学成像与多模态电子断层扫描","authors":"Jason Manassa, William Millsaps, Jonathan Schwartz, Robert Hovden","doi":"10.1038/s41524-025-01750-y","DOIUrl":null,"url":null,"abstract":"<p>Accurate mapping of nanoscale chemistry in three dimensions (3D) has been a longstanding challenge. Modern electron microscopy provides chemical images by electron energy loss spectroscopy (EELS) and energy dispersive x-ray spectrometry (EDX) but requires high fluences that damage specimens. In 3D, the requirements are worse; electron tomography demands many high-fluence chemical maps for reconstruction, creating a tradeoff between resolution, accuracy, and sample survival. Fused multimodal electron tomography (MM-ET) alleviates this requirement by leveraging lower-fluence high-angle annular dark-field (HAADF) images alongside a few chemical maps to dramatically improve chemical resolution. Here, experimental and computational parameter space is systematically explored to determine when MM-ET performs best. Ideal imaging conditions balance sample survival with resolution and chemical specificity; we recommend a tilt range of at least ± 70<sup><span>∘</span></sup>, acquiring 40 equally spaced HAADF projections (signal-to-noise &gt; 10), and 7 EELS/EDX maps of each chemistry (signal-to-noise &gt; 4).</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"7 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal 3D chemical imaging with multimodal electron tomography\",\"authors\":\"Jason Manassa, William Millsaps, Jonathan Schwartz, Robert Hovden\",\"doi\":\"10.1038/s41524-025-01750-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Accurate mapping of nanoscale chemistry in three dimensions (3D) has been a longstanding challenge. Modern electron microscopy provides chemical images by electron energy loss spectroscopy (EELS) and energy dispersive x-ray spectrometry (EDX) but requires high fluences that damage specimens. In 3D, the requirements are worse; electron tomography demands many high-fluence chemical maps for reconstruction, creating a tradeoff between resolution, accuracy, and sample survival. Fused multimodal electron tomography (MM-ET) alleviates this requirement by leveraging lower-fluence high-angle annular dark-field (HAADF) images alongside a few chemical maps to dramatically improve chemical resolution. Here, experimental and computational parameter space is systematically explored to determine when MM-ET performs best. Ideal imaging conditions balance sample survival with resolution and chemical specificity; we recommend a tilt range of at least ± 70<sup><span>∘</span></sup>, acquiring 40 equally spaced HAADF projections (signal-to-noise &gt; 10), and 7 EELS/EDX maps of each chemistry (signal-to-noise &gt; 4).</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01750-y\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01750-y","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

纳米尺度化学的三维精确映射一直是一个长期的挑战。现代电子显微镜通过电子能量损失光谱(EELS)和能量色散x射线光谱(EDX)提供化学图像,但需要高影响,损坏样品。在3D中,要求更差;电子断层扫描需要许多高通量的化学图进行重建,在分辨率,准确性和样品存活率之间进行权衡。融合多模态电子断层扫描(MM-ET)通过利用低通量高角度环形暗场(HAADF)图像和一些化学图来显著提高化学分辨率,从而减轻了这一要求。在这里,系统地探索了实验和计算参数空间,以确定MM-ET何时表现最佳。理想的成像条件平衡样品生存与分辨率和化学特异性;我们建议倾斜范围至少为±70°,获取40个等间距HAADF投影(信号-噪声>; 10)和7个每种化学物质的EELS/EDX图(信号-噪声>; 4)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimal 3D chemical imaging with multimodal electron tomography

Optimal 3D chemical imaging with multimodal electron tomography

Accurate mapping of nanoscale chemistry in three dimensions (3D) has been a longstanding challenge. Modern electron microscopy provides chemical images by electron energy loss spectroscopy (EELS) and energy dispersive x-ray spectrometry (EDX) but requires high fluences that damage specimens. In 3D, the requirements are worse; electron tomography demands many high-fluence chemical maps for reconstruction, creating a tradeoff between resolution, accuracy, and sample survival. Fused multimodal electron tomography (MM-ET) alleviates this requirement by leveraging lower-fluence high-angle annular dark-field (HAADF) images alongside a few chemical maps to dramatically improve chemical resolution. Here, experimental and computational parameter space is systematically explored to determine when MM-ET performs best. Ideal imaging conditions balance sample survival with resolution and chemical specificity; we recommend a tilt range of at least ± 70, acquiring 40 equally spaced HAADF projections (signal-to-noise > 10), and 7 EELS/EDX maps of each chemistry (signal-to-noise > 4).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信