Alexander J. Pattison, Stephanie M. Ribet, Marcus M. Noack, Georgios Varnavides, Kunwoo Park, Earl J. Kirkland, Jungwon Park, Colin Ophus, Peter Ercius
{"title":"利用贝叶斯优化技术对扫描透射电子显微镜进行beacon自动像差校正","authors":"Alexander J. Pattison, Stephanie M. Ribet, Marcus M. Noack, Georgios Varnavides, Kunwoo Park, Earl J. Kirkland, Jungwon Park, Colin Ophus, Peter Ercius","doi":"10.1038/s41524-025-01766-4","DOIUrl":null,"url":null,"abstract":"<p>Aberration correction is an important aspect of modern high-resolution scanning transmission electron microscopy. Most methods of aligning aberration correctors require specialized sample regions and are unsuitable for fine-tuning aberrations without interrupting on-going experiments. Here, we present an automated method of correcting first- and second-order aberrations called BEACON, which uses Bayesian optimization of the normalized image variance to efficiently determine the optimal corrector settings. We demonstrate its use on gold nanoparticles and a hafnium dioxide thin film showing its versatility in nano- and atomic-scale experiments. BEACON can correct all first- and second-order aberrations simultaneously to achieve an initial alignment and first- and second-order aberrations independently for fine alignment. Ptychographic reconstructions are used to demonstrate an improvement in probe shape and a reduction in the target aberration.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"38 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BEACON—automated aberration correction for scanning transmission electron microscopy using Bayesian optimization\",\"authors\":\"Alexander J. Pattison, Stephanie M. Ribet, Marcus M. Noack, Georgios Varnavides, Kunwoo Park, Earl J. Kirkland, Jungwon Park, Colin Ophus, Peter Ercius\",\"doi\":\"10.1038/s41524-025-01766-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Aberration correction is an important aspect of modern high-resolution scanning transmission electron microscopy. Most methods of aligning aberration correctors require specialized sample regions and are unsuitable for fine-tuning aberrations without interrupting on-going experiments. Here, we present an automated method of correcting first- and second-order aberrations called BEACON, which uses Bayesian optimization of the normalized image variance to efficiently determine the optimal corrector settings. We demonstrate its use on gold nanoparticles and a hafnium dioxide thin film showing its versatility in nano- and atomic-scale experiments. BEACON can correct all first- and second-order aberrations simultaneously to achieve an initial alignment and first- and second-order aberrations independently for fine alignment. Ptychographic reconstructions are used to demonstrate an improvement in probe shape and a reduction in the target aberration.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2025-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01766-4\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01766-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
BEACON—automated aberration correction for scanning transmission electron microscopy using Bayesian optimization
Aberration correction is an important aspect of modern high-resolution scanning transmission electron microscopy. Most methods of aligning aberration correctors require specialized sample regions and are unsuitable for fine-tuning aberrations without interrupting on-going experiments. Here, we present an automated method of correcting first- and second-order aberrations called BEACON, which uses Bayesian optimization of the normalized image variance to efficiently determine the optimal corrector settings. We demonstrate its use on gold nanoparticles and a hafnium dioxide thin film showing its versatility in nano- and atomic-scale experiments. BEACON can correct all first- and second-order aberrations simultaneously to achieve an initial alignment and first- and second-order aberrations independently for fine alignment. Ptychographic reconstructions are used to demonstrate an improvement in probe shape and a reduction in the target aberration.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.