{"title":"液体膏状互连在硅功率二极管上","authors":"Nick Baker;Francesco Iannuzzo;Szymon Bęczkowski","doi":"10.1109/TCPMT.2025.3582563","DOIUrl":null,"url":null,"abstract":"State-of-the-art power semiconductors use solid metal interconnects such as wire-bonding, soldering, and sintering. Thermo-mechanical stress degrades these solid metal interconnects and is the main cause of failure in power semiconductors. This letter demonstrates the use of liquid-metals (LMs), which are inherently resistant to thermo-mechanical stress, to package a silicon power diode. The manufacturing process is performed below <inline-formula> <tex-math>$80~^{\\circ }$ </tex-math></inline-formula>C. The thermo-mechanical lifetime is assessed through power cycling and is shown to increase by factor of 3.3x in comparison to SAC305 solder and aluminum wirebonded diodes. In addition, the thermal resistance of LM packaged diodes shows a 9% improvement. Corrosion and pump out of the LM is thought to be the failure mode.","PeriodicalId":13085,"journal":{"name":"IEEE Transactions on Components, Packaging and Manufacturing Technology","volume":"15 8","pages":"1661-1665"},"PeriodicalIF":3.0000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liquid Paste Interconnects on a Silicon Power Diode\",\"authors\":\"Nick Baker;Francesco Iannuzzo;Szymon Bęczkowski\",\"doi\":\"10.1109/TCPMT.2025.3582563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"State-of-the-art power semiconductors use solid metal interconnects such as wire-bonding, soldering, and sintering. Thermo-mechanical stress degrades these solid metal interconnects and is the main cause of failure in power semiconductors. This letter demonstrates the use of liquid-metals (LMs), which are inherently resistant to thermo-mechanical stress, to package a silicon power diode. The manufacturing process is performed below <inline-formula> <tex-math>$80~^{\\\\circ }$ </tex-math></inline-formula>C. The thermo-mechanical lifetime is assessed through power cycling and is shown to increase by factor of 3.3x in comparison to SAC305 solder and aluminum wirebonded diodes. In addition, the thermal resistance of LM packaged diodes shows a 9% improvement. Corrosion and pump out of the LM is thought to be the failure mode.\",\"PeriodicalId\":13085,\"journal\":{\"name\":\"IEEE Transactions on Components, Packaging and Manufacturing Technology\",\"volume\":\"15 8\",\"pages\":\"1661-1665\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Components, Packaging and Manufacturing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11077423/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Components, Packaging and Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11077423/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Liquid Paste Interconnects on a Silicon Power Diode
State-of-the-art power semiconductors use solid metal interconnects such as wire-bonding, soldering, and sintering. Thermo-mechanical stress degrades these solid metal interconnects and is the main cause of failure in power semiconductors. This letter demonstrates the use of liquid-metals (LMs), which are inherently resistant to thermo-mechanical stress, to package a silicon power diode. The manufacturing process is performed below $80~^{\circ }$ C. The thermo-mechanical lifetime is assessed through power cycling and is shown to increase by factor of 3.3x in comparison to SAC305 solder and aluminum wirebonded diodes. In addition, the thermal resistance of LM packaged diodes shows a 9% improvement. Corrosion and pump out of the LM is thought to be the failure mode.
期刊介绍:
IEEE Transactions on Components, Packaging, and Manufacturing Technology publishes research and application articles on modeling, design, building blocks, technical infrastructure, and analysis underpinning electronic, photonic and MEMS packaging, in addition to new developments in passive components, electrical contacts and connectors, thermal management, and device reliability; as well as the manufacture of electronics parts and assemblies, with broad coverage of design, factory modeling, assembly methods, quality, product robustness, and design-for-environment.