{"title":"基于Gr-MoS2的ds - fet设计指南","authors":"Tommaso Ugolini, Elena Gnani","doi":"10.1016/j.sse.2025.109216","DOIUrl":null,"url":null,"abstract":"<div><div>As the development of Dirac-Source Field-Effect Transistors (DS-FETs) progresses, there is an increasing need for a robust, flexible, and agile simulation framework capable of evaluating device performance across a range of operating conditions. This work addresses that need by coupling a two-dimensional (2D) Poisson solver with a quantum transport model under the ballistic transport regime. This simulation approach is employed to analyze the electrical characteristics of a DS-FET realized with the heterojunction of graphene and monolayer MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>. In addition, the impact of gate-to-channel alignment on device performance is systematically investigated. Simulation results underscore the critical role of full gate overlap with the semiconducting region and substantiate the feasibility of DS-FETs based on these two materials.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"230 ","pages":"Article 109216"},"PeriodicalIF":1.4000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design guidelines for Gr-MoS2 based DS-FETs\",\"authors\":\"Tommaso Ugolini, Elena Gnani\",\"doi\":\"10.1016/j.sse.2025.109216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As the development of Dirac-Source Field-Effect Transistors (DS-FETs) progresses, there is an increasing need for a robust, flexible, and agile simulation framework capable of evaluating device performance across a range of operating conditions. This work addresses that need by coupling a two-dimensional (2D) Poisson solver with a quantum transport model under the ballistic transport regime. This simulation approach is employed to analyze the electrical characteristics of a DS-FET realized with the heterojunction of graphene and monolayer MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>. In addition, the impact of gate-to-channel alignment on device performance is systematically investigated. Simulation results underscore the critical role of full gate overlap with the semiconducting region and substantiate the feasibility of DS-FETs based on these two materials.</div></div>\",\"PeriodicalId\":21909,\"journal\":{\"name\":\"Solid-state Electronics\",\"volume\":\"230 \",\"pages\":\"Article 109216\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid-state Electronics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038110125001613\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110125001613","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
As the development of Dirac-Source Field-Effect Transistors (DS-FETs) progresses, there is an increasing need for a robust, flexible, and agile simulation framework capable of evaluating device performance across a range of operating conditions. This work addresses that need by coupling a two-dimensional (2D) Poisson solver with a quantum transport model under the ballistic transport regime. This simulation approach is employed to analyze the electrical characteristics of a DS-FET realized with the heterojunction of graphene and monolayer MoS. In addition, the impact of gate-to-channel alignment on device performance is systematically investigated. Simulation results underscore the critical role of full gate overlap with the semiconducting region and substantiate the feasibility of DS-FETs based on these two materials.
期刊介绍:
It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.