Wafae El Berjali , Victor Colas , Sidi Ould Saad Hamady , Sha Shiong Ng , Nur Atiqah Hamzah , Pascal Boulet , David Horwat , Jean-François Pierson
{"title":"旋转镀膜氧化铜:低成本的Cu2O/CuO相比调制薄膜沉积和后退火工艺","authors":"Wafae El Berjali , Victor Colas , Sidi Ould Saad Hamady , Sha Shiong Ng , Nur Atiqah Hamzah , Pascal Boulet , David Horwat , Jean-François Pierson","doi":"10.1016/j.tsf.2025.140762","DOIUrl":null,"url":null,"abstract":"<div><div>Copper oxide, in its cuprous (<span><math><mrow><msub><mrow><mi>Cu</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></mrow></math></span>) and cupric (CuO) phases, is a promising material for energy and sensor applications due to its abundance, low cost, non-toxicity, and advantageous optoelectronic properties. However, its application in optoelectronic devices is limited by the lack of environmentally sustainable, cost-effective deposition methods capable of precise phase control. This work presents a spin-coating deposition method that utilizes non-toxic precursors in a cost-effective and scalable process. The method comprises two critical stages: (1) optimization of the spin-coating process by varying rotation speed (2000–6000 rpm) and cycle number (1–14 cycles) to produce homogeneous thin films with controlled thickness (20–175 nm) and low surface roughness (5 nm); and (2) post-annealing to achieve phase-specific control. Annealing at <span><math><mrow><mn>300</mn><mspace></mspace><mo>°</mo><mi>C</mi></mrow></math></span> induces predominantly <span><math><mrow><msub><mrow><mi>Cu</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></mrow></math></span>, while biphased films are obtained at lower or higher temperatures. Optical and electrical characterization reveals a direct bandgap of 1.88 eV for <span><math><mrow><msub><mrow><mi>Cu</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></mrow></math></span>-dominant films and all films exhibit p-type conductivity, carrier mobility of 17–30 <span><math><mrow><msup><mrow><mi>cm</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>V</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><msup><mrow><mi>s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>, and carrier concentrations of <span><math><mrow><mn>8</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>13</mn></mrow></msup></mrow></math></span>–<span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>15</mn></mrow></msup><mspace></mspace><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span>. This cost-effective and scalable method demonstrates precise phase control and material properties, highlighting copper oxide’s potential for next-generation optoelectronic devices.</div></div>","PeriodicalId":23182,"journal":{"name":"Thin Solid Films","volume":"826 ","pages":"Article 140762"},"PeriodicalIF":2.0000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Copper oxide by spin-coating: Cost-effective deposition and post-annealing process for thin films with modulated Cu2O/CuO phase ratio\",\"authors\":\"Wafae El Berjali , Victor Colas , Sidi Ould Saad Hamady , Sha Shiong Ng , Nur Atiqah Hamzah , Pascal Boulet , David Horwat , Jean-François Pierson\",\"doi\":\"10.1016/j.tsf.2025.140762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Copper oxide, in its cuprous (<span><math><mrow><msub><mrow><mi>Cu</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></mrow></math></span>) and cupric (CuO) phases, is a promising material for energy and sensor applications due to its abundance, low cost, non-toxicity, and advantageous optoelectronic properties. However, its application in optoelectronic devices is limited by the lack of environmentally sustainable, cost-effective deposition methods capable of precise phase control. This work presents a spin-coating deposition method that utilizes non-toxic precursors in a cost-effective and scalable process. The method comprises two critical stages: (1) optimization of the spin-coating process by varying rotation speed (2000–6000 rpm) and cycle number (1–14 cycles) to produce homogeneous thin films with controlled thickness (20–175 nm) and low surface roughness (5 nm); and (2) post-annealing to achieve phase-specific control. Annealing at <span><math><mrow><mn>300</mn><mspace></mspace><mo>°</mo><mi>C</mi></mrow></math></span> induces predominantly <span><math><mrow><msub><mrow><mi>Cu</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></mrow></math></span>, while biphased films are obtained at lower or higher temperatures. Optical and electrical characterization reveals a direct bandgap of 1.88 eV for <span><math><mrow><msub><mrow><mi>Cu</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></mrow></math></span>-dominant films and all films exhibit p-type conductivity, carrier mobility of 17–30 <span><math><mrow><msup><mrow><mi>cm</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>V</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><msup><mrow><mi>s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>, and carrier concentrations of <span><math><mrow><mn>8</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>13</mn></mrow></msup></mrow></math></span>–<span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>15</mn></mrow></msup><mspace></mspace><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span>. This cost-effective and scalable method demonstrates precise phase control and material properties, highlighting copper oxide’s potential for next-generation optoelectronic devices.</div></div>\",\"PeriodicalId\":23182,\"journal\":{\"name\":\"Thin Solid Films\",\"volume\":\"826 \",\"pages\":\"Article 140762\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thin Solid Films\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040609025001610\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin Solid Films","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040609025001610","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Copper oxide by spin-coating: Cost-effective deposition and post-annealing process for thin films with modulated Cu2O/CuO phase ratio
Copper oxide, in its cuprous () and cupric (CuO) phases, is a promising material for energy and sensor applications due to its abundance, low cost, non-toxicity, and advantageous optoelectronic properties. However, its application in optoelectronic devices is limited by the lack of environmentally sustainable, cost-effective deposition methods capable of precise phase control. This work presents a spin-coating deposition method that utilizes non-toxic precursors in a cost-effective and scalable process. The method comprises two critical stages: (1) optimization of the spin-coating process by varying rotation speed (2000–6000 rpm) and cycle number (1–14 cycles) to produce homogeneous thin films with controlled thickness (20–175 nm) and low surface roughness (5 nm); and (2) post-annealing to achieve phase-specific control. Annealing at induces predominantly , while biphased films are obtained at lower or higher temperatures. Optical and electrical characterization reveals a direct bandgap of 1.88 eV for -dominant films and all films exhibit p-type conductivity, carrier mobility of 17–30 , and carrier concentrations of –. This cost-effective and scalable method demonstrates precise phase control and material properties, highlighting copper oxide’s potential for next-generation optoelectronic devices.
期刊介绍:
Thin Solid Films is an international journal which serves scientists and engineers working in the fields of thin-film synthesis, characterization, and applications. The field of thin films, which can be defined as the confluence of materials science, surface science, and applied physics, has become an identifiable unified discipline of scientific endeavor.