采用熔融硅缝片技术实现非均匀毫米波电路的直接模对模桥接

IF 3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhonghao Zhang;Paul K. Jo;Shane Oh;Muhannad S. Bakir
{"title":"采用熔融硅缝片技术实现非均匀毫米波电路的直接模对模桥接","authors":"Zhonghao Zhang;Paul K. Jo;Shane Oh;Muhannad S. Bakir","doi":"10.1109/TCPMT.2025.3587609","DOIUrl":null,"url":null,"abstract":"This work presents a novel direct die-to-die (D2D) interconnect approach utilizing fused-silica stitch-chip technology to integrate heterogeneous commercial off-the-shelf (COTS) chiplets without the need for die embedding. This study evaluates RF performance through simulations and experimental measurements, comparing the stitch-chip interconnect against both wire-bond and other interconnect technologies. In addition, this study analyzes the impact of die embedding within a cavity on its performance. A heterogeneous integration of a low-noise amplifier (LNA) die (GaAs) and a switch die (AlGaAs), both designed for K-/Ka-band applications, is demonstrated using stitch-chip technology. RF characterization results verify that the bare LNA die maintains strong performance, achieving greater than 12-dB return loss (RL). The integrated LNA-switch module achieves a 20-dB linear gain up to 38 GHz, with the D2D stitch-chip interconnect showing a 4-dB improvement in gain compared to the die-to-package-to-die (D2P2D) approach and an 8.5-dB increase in gain compared to wire-bond connections. The results demonstrate that the proposed stitch-chip technology effectively minimizes insertion loss (IL), improves impedance matching, and enhances RF signal integrity, positioning it as an up-and-coming solution for future heterogeneous RF/mm-wave multichip integration applications.","PeriodicalId":13085,"journal":{"name":"IEEE Transactions on Components, Packaging and Manufacturing Technology","volume":"15 8","pages":"1652-1660"},"PeriodicalIF":3.0000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct Die-to-Die Bridging for Heterogeneous mm-Wave Circuits Enabled by Fused-Silica Stitch-Chip Technology\",\"authors\":\"Zhonghao Zhang;Paul K. Jo;Shane Oh;Muhannad S. Bakir\",\"doi\":\"10.1109/TCPMT.2025.3587609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a novel direct die-to-die (D2D) interconnect approach utilizing fused-silica stitch-chip technology to integrate heterogeneous commercial off-the-shelf (COTS) chiplets without the need for die embedding. This study evaluates RF performance through simulations and experimental measurements, comparing the stitch-chip interconnect against both wire-bond and other interconnect technologies. In addition, this study analyzes the impact of die embedding within a cavity on its performance. A heterogeneous integration of a low-noise amplifier (LNA) die (GaAs) and a switch die (AlGaAs), both designed for K-/Ka-band applications, is demonstrated using stitch-chip technology. RF characterization results verify that the bare LNA die maintains strong performance, achieving greater than 12-dB return loss (RL). The integrated LNA-switch module achieves a 20-dB linear gain up to 38 GHz, with the D2D stitch-chip interconnect showing a 4-dB improvement in gain compared to the die-to-package-to-die (D2P2D) approach and an 8.5-dB increase in gain compared to wire-bond connections. The results demonstrate that the proposed stitch-chip technology effectively minimizes insertion loss (IL), improves impedance matching, and enhances RF signal integrity, positioning it as an up-and-coming solution for future heterogeneous RF/mm-wave multichip integration applications.\",\"PeriodicalId\":13085,\"journal\":{\"name\":\"IEEE Transactions on Components, Packaging and Manufacturing Technology\",\"volume\":\"15 8\",\"pages\":\"1652-1660\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Components, Packaging and Manufacturing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11075902/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Components, Packaging and Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11075902/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

这项工作提出了一种新的直接模对模(D2D)互连方法,利用熔融二氧化硅缝合芯片技术集成异构商业现成(COTS)芯片,而无需嵌入模具。本研究通过模拟和实验测量来评估射频性能,将缝片互连与线键和其他互连技术进行比较。此外,本研究还分析了型腔内嵌模对型腔性能的影响。低噪声放大器(LNA)芯片(GaAs)和开关芯片(AlGaAs)的异质集成,都是为K / ka波段应用而设计的,使用缝片技术进行了演示。射频表征结果证实裸LNA芯片保持了较强的性能,实现了大于12db的回波损耗(RL)。集成的lna开关模块实现了高达38 GHz的20 db线性增益,与D2P2D(晶片到封装到晶片)方法相比,D2D拼接芯片互连的增益提高了4 db,与线键连接相比,增益提高了8.5 db。结果表明,所提出的缝片技术有效地减少了插入损耗(IL),改善了阻抗匹配,增强了射频信号的完整性,使其成为未来异构射频/毫米波多芯片集成应用的一个有前途的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct Die-to-Die Bridging for Heterogeneous mm-Wave Circuits Enabled by Fused-Silica Stitch-Chip Technology
This work presents a novel direct die-to-die (D2D) interconnect approach utilizing fused-silica stitch-chip technology to integrate heterogeneous commercial off-the-shelf (COTS) chiplets without the need for die embedding. This study evaluates RF performance through simulations and experimental measurements, comparing the stitch-chip interconnect against both wire-bond and other interconnect technologies. In addition, this study analyzes the impact of die embedding within a cavity on its performance. A heterogeneous integration of a low-noise amplifier (LNA) die (GaAs) and a switch die (AlGaAs), both designed for K-/Ka-band applications, is demonstrated using stitch-chip technology. RF characterization results verify that the bare LNA die maintains strong performance, achieving greater than 12-dB return loss (RL). The integrated LNA-switch module achieves a 20-dB linear gain up to 38 GHz, with the D2D stitch-chip interconnect showing a 4-dB improvement in gain compared to the die-to-package-to-die (D2P2D) approach and an 8.5-dB increase in gain compared to wire-bond connections. The results demonstrate that the proposed stitch-chip technology effectively minimizes insertion loss (IL), improves impedance matching, and enhances RF signal integrity, positioning it as an up-and-coming solution for future heterogeneous RF/mm-wave multichip integration applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Components, Packaging and Manufacturing Technology
IEEE Transactions on Components, Packaging and Manufacturing Technology ENGINEERING, MANUFACTURING-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
4.70
自引率
13.60%
发文量
203
审稿时长
3 months
期刊介绍: IEEE Transactions on Components, Packaging, and Manufacturing Technology publishes research and application articles on modeling, design, building blocks, technical infrastructure, and analysis underpinning electronic, photonic and MEMS packaging, in addition to new developments in passive components, electrical contacts and connectors, thermal management, and device reliability; as well as the manufacture of electronics parts and assemblies, with broad coverage of design, factory modeling, assembly methods, quality, product robustness, and design-for-environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信