射频溅射VO2薄膜中金属-绝缘体跃迁和低温电荷输运的衬底诱导调制

IF 2 4区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS
Akash Kumar Singh , Suman Kumari , H.K. Singh , P.K. Siwach
{"title":"射频溅射VO2薄膜中金属-绝缘体跃迁和低温电荷输运的衬底诱导调制","authors":"Akash Kumar Singh ,&nbsp;Suman Kumari ,&nbsp;H.K. Singh ,&nbsp;P.K. Siwach","doi":"10.1016/j.tsf.2025.140773","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we investigate the influence of substrate type on the phase transition behavior and charge transport characteristics of polycrystalline VO<sub>2</sub> films grown by Radio Frequency (RF) magnetron sputtering of a V<sub>2</sub>O<sub>5</sub> target in pure argon ambient at ∼700 °C. The films were deposited on five single-crystal substrates namely, Yttria Stabilized Zirconia [YSZ (001)], Lanthanum Aluminate [LAO (100)], Magnesium Oxide [MgO (100)], c-plane Sapphire [ALO (0001)], and Zinc Oxide [ZnO (0001)]. Structural and Raman analysis confirmed the dominance of the VO<sub>2</sub> phase with minor secondary V-O phases. Surface morphology revealed substrate-dependent uniformity and grain structure. Films on YSZ (001), LAO (100), and MgO (100) exhibited a sharp and reversible Insulator-Metal/Metal-Insulator transition (IMT/MIT) around ∼(339–341 K/66–68 °C), with narrow Thermal hysteresis (T<sub>H</sub>) varies from ∼(4–8 K) and a two-order resistivity change. In contrast, films on ALO (0001) and ZnO (0001) showed broader transitions, lower transition temperatures (T<sub>IM</sub>/T<sub>MI</sub> ∼331–337 K/58–64 °C), and reduced resistivity change, particularly on ZnO (0001), which displayed a single-order transition with a larger hysteresis (∼10 K). The Temperature Coefficient of Resistance/Resistivity (TCR) showed trends consistent with resistivity behavior, reaching values as high as −98 % K<sup>-1</sup> near the IMT/MIT. Activation energy (E<sub>A</sub>) in the insulating phase varied significantly with substrate, from ∼0.221 eV (MgO) to ∼0.395 eV (ZnO), and low-temperature conduction (300 K ≤ <em>T</em> ≤ 4.2 K) revealed a crossover from Efros–Shklovskii Variable Range Hopping (ES-VRH) on symmetric substrates [YSZ (001), LAO (100), MgO (100)] to Nearest-Neighbor Hopping (NN<img>H) on ALO (0001) and ZnO (0001). These results underline the critical role of substrate symmetry and orientation in tailoring the phase transition dynamics and transport mechanisms in VO<sub>2</sub> films, providing useful guidelines for substrate-engineered VO<sub>2</sub>-based device applications.</div></div>","PeriodicalId":23182,"journal":{"name":"Thin Solid Films","volume":"826 ","pages":"Article 140773"},"PeriodicalIF":2.0000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Substrate-induced modulation of metal-insulator transition and low-temperature charge transport in radio frequency sputtered VO2 films\",\"authors\":\"Akash Kumar Singh ,&nbsp;Suman Kumari ,&nbsp;H.K. Singh ,&nbsp;P.K. Siwach\",\"doi\":\"10.1016/j.tsf.2025.140773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we investigate the influence of substrate type on the phase transition behavior and charge transport characteristics of polycrystalline VO<sub>2</sub> films grown by Radio Frequency (RF) magnetron sputtering of a V<sub>2</sub>O<sub>5</sub> target in pure argon ambient at ∼700 °C. The films were deposited on five single-crystal substrates namely, Yttria Stabilized Zirconia [YSZ (001)], Lanthanum Aluminate [LAO (100)], Magnesium Oxide [MgO (100)], c-plane Sapphire [ALO (0001)], and Zinc Oxide [ZnO (0001)]. Structural and Raman analysis confirmed the dominance of the VO<sub>2</sub> phase with minor secondary V-O phases. Surface morphology revealed substrate-dependent uniformity and grain structure. Films on YSZ (001), LAO (100), and MgO (100) exhibited a sharp and reversible Insulator-Metal/Metal-Insulator transition (IMT/MIT) around ∼(339–341 K/66–68 °C), with narrow Thermal hysteresis (T<sub>H</sub>) varies from ∼(4–8 K) and a two-order resistivity change. In contrast, films on ALO (0001) and ZnO (0001) showed broader transitions, lower transition temperatures (T<sub>IM</sub>/T<sub>MI</sub> ∼331–337 K/58–64 °C), and reduced resistivity change, particularly on ZnO (0001), which displayed a single-order transition with a larger hysteresis (∼10 K). The Temperature Coefficient of Resistance/Resistivity (TCR) showed trends consistent with resistivity behavior, reaching values as high as −98 % K<sup>-1</sup> near the IMT/MIT. Activation energy (E<sub>A</sub>) in the insulating phase varied significantly with substrate, from ∼0.221 eV (MgO) to ∼0.395 eV (ZnO), and low-temperature conduction (300 K ≤ <em>T</em> ≤ 4.2 K) revealed a crossover from Efros–Shklovskii Variable Range Hopping (ES-VRH) on symmetric substrates [YSZ (001), LAO (100), MgO (100)] to Nearest-Neighbor Hopping (NN<img>H) on ALO (0001) and ZnO (0001). These results underline the critical role of substrate symmetry and orientation in tailoring the phase transition dynamics and transport mechanisms in VO<sub>2</sub> films, providing useful guidelines for substrate-engineered VO<sub>2</sub>-based device applications.</div></div>\",\"PeriodicalId\":23182,\"journal\":{\"name\":\"Thin Solid Films\",\"volume\":\"826 \",\"pages\":\"Article 140773\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thin Solid Films\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040609025001725\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin Solid Films","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040609025001725","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们研究了衬底类型对V2O5靶材的射频磁控溅射生长的多晶VO2薄膜的相变行为和电荷输运特性的影响。薄膜被沉积在五种单晶衬底上,即钇稳定氧化锆[YSZ(001)]、铝酸镧[LAO(100)]、氧化镁[MgO(100)]、c平面蓝宝石[ALO(0001)]和氧化锌[ZnO(0001)]。结构和拉曼分析证实了VO2相的优势和次要的V-O相。表面形貌显示出与衬底相关的均匀性和晶粒结构。YSZ(001)、LAO(100)和MgO(100)上的薄膜在~ (339-341 K/ 66-68°C)附近呈现出急剧可逆的绝缘体-金属/金属-绝缘体转变(IMT/MIT),热滞后(TH)在~ (4-8 K之间变化,电阻率呈二阶变化。相比之下,在ALO(0001)和ZnO(0001)上的薄膜表现出更广泛的转变,更低的转变温度(TIM/TMI ~ 331 ~ 337 K/58 ~ 64℃),电阻率变化更小,特别是在ZnO(0001)上,表现出单级转变,迟滞较大(~ 10 K)。电阻率温度系数(TCR)表现出与电阻率行为一致的趋势,在IMT/MIT附近达到高达- 98% K-1。绝缘相的活化能(EA)随衬底变化显著,从~ 0.221 eV (MgO)到~ 0.395 eV (ZnO),低温导通(300 K≤T≤4.2 K)显示了对称衬底上的Efros-Shklovskii可变范围跳变(ES-VRH) [YSZ (001), LAO (100), MgO(100)]与ALO(0001)和ZnO(0001)上的最近邻跳变(NNH)的交叉。这些结果强调了衬底对称和取向在调整VO2薄膜的相变动力学和输运机制方面的关键作用,为衬底工程VO2器件的应用提供了有用的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Substrate-induced modulation of metal-insulator transition and low-temperature charge transport in radio frequency sputtered VO2 films
In this study, we investigate the influence of substrate type on the phase transition behavior and charge transport characteristics of polycrystalline VO2 films grown by Radio Frequency (RF) magnetron sputtering of a V2O5 target in pure argon ambient at ∼700 °C. The films were deposited on five single-crystal substrates namely, Yttria Stabilized Zirconia [YSZ (001)], Lanthanum Aluminate [LAO (100)], Magnesium Oxide [MgO (100)], c-plane Sapphire [ALO (0001)], and Zinc Oxide [ZnO (0001)]. Structural and Raman analysis confirmed the dominance of the VO2 phase with minor secondary V-O phases. Surface morphology revealed substrate-dependent uniformity and grain structure. Films on YSZ (001), LAO (100), and MgO (100) exhibited a sharp and reversible Insulator-Metal/Metal-Insulator transition (IMT/MIT) around ∼(339–341 K/66–68 °C), with narrow Thermal hysteresis (TH) varies from ∼(4–8 K) and a two-order resistivity change. In contrast, films on ALO (0001) and ZnO (0001) showed broader transitions, lower transition temperatures (TIM/TMI ∼331–337 K/58–64 °C), and reduced resistivity change, particularly on ZnO (0001), which displayed a single-order transition with a larger hysteresis (∼10 K). The Temperature Coefficient of Resistance/Resistivity (TCR) showed trends consistent with resistivity behavior, reaching values as high as −98 % K-1 near the IMT/MIT. Activation energy (EA) in the insulating phase varied significantly with substrate, from ∼0.221 eV (MgO) to ∼0.395 eV (ZnO), and low-temperature conduction (300 K ≤ T ≤ 4.2 K) revealed a crossover from Efros–Shklovskii Variable Range Hopping (ES-VRH) on symmetric substrates [YSZ (001), LAO (100), MgO (100)] to Nearest-Neighbor Hopping (NNH) on ALO (0001) and ZnO (0001). These results underline the critical role of substrate symmetry and orientation in tailoring the phase transition dynamics and transport mechanisms in VO2 films, providing useful guidelines for substrate-engineered VO2-based device applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Thin Solid Films
Thin Solid Films 工程技术-材料科学:膜
CiteScore
4.00
自引率
4.80%
发文量
381
审稿时长
7.5 months
期刊介绍: Thin Solid Films is an international journal which serves scientists and engineers working in the fields of thin-film synthesis, characterization, and applications. The field of thin films, which can be defined as the confluence of materials science, surface science, and applied physics, has become an identifiable unified discipline of scientific endeavor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信