用于气管造口管的协同双纳米结构抗菌防污涂层,以减少呼吸机相关性肺炎

IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Jie Gong , Linsai Guan , Feiyao Wang , Muhammad Fayyaz ur Rehman , Jianping Zhu
{"title":"用于气管造口管的协同双纳米结构抗菌防污涂层,以减少呼吸机相关性肺炎","authors":"Jie Gong ,&nbsp;Linsai Guan ,&nbsp;Feiyao Wang ,&nbsp;Muhammad Fayyaz ur Rehman ,&nbsp;Jianping Zhu","doi":"10.1016/j.medengphy.2025.104416","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>To develop a dual-nanostructure coating for tracheostomy tubes to prevent ventilator-associated pneumonia (VAP) by inhibiting bacterial biofilm formation through combined superhydrophobic antifouling and sustained silver ion (Ag⁺) release.</div></div><div><h3>Methods</h3><div>Mesoporous silica nanoparticles (MSNs) were functionalized with octyltriethoxysilane (OTES) for superhydrophobicity (water contact angle: 162.8 ± 1°, sliding angle: 3.1 ± 0.5°) and loaded with 5–10 nm Ag₂O nanoparticles. Stability was evaluated via sandpaper abrasion tests (15 cycles, 120 g load) and short-term immersion (24 h) in pH 2–13 solutions. In vitro evaluations included quantification of bacterial adhesion (<em>P. aeruginosa, Escherichia coli, S. aureus</em>; 1 × 10⁸ CFU/mL), biofilm analysis by SEM/CLSM, and CCK-8 cytotoxicity assays with NIH/3T3 fibroblasts. In vivo, an 8-pig VAP model with hourly P. aeruginosa inoculation (1 × 10⁶ CFU/mL) was used to assess tracheal biofilm thickness, lung bacterial load, and inflammatory infiltration via H&amp;E staining.</div></div><div><h3>Results</h3><div>The coating retained superhydrophobicity after challenges, reduced bacterial adhesion by ≥90.2 % vs. uncoated controls in vitro with disrupted biofilms and &gt;95 % cell viability. In pigs, it reduced tracheal biofilm thickness by 65 % (<em>p</em> &lt; 0.05), lung bacterial load by 82 % (<em>p</em> &lt; 0.01), and neutrophil infiltration (<em>p</em> &lt; 0.05).</div></div><div><h3>Conclusion</h3><div>The Ag₂O-MSNs@OTES coating effectively combats VAP via synergistic effects, with favorable short-term stability, excellent biocompatibility, and low cost (&lt;$5/tube), supporting its potential for clinical translation. Further long-term stability tests are required to validate performance over extended clinical use.</div></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"145 ","pages":"Article 104416"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic dual-nanostructure antibacterial-antifouling coating for tracheostomy tubes to reduce ventilator-associated pneumonia\",\"authors\":\"Jie Gong ,&nbsp;Linsai Guan ,&nbsp;Feiyao Wang ,&nbsp;Muhammad Fayyaz ur Rehman ,&nbsp;Jianping Zhu\",\"doi\":\"10.1016/j.medengphy.2025.104416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><div>To develop a dual-nanostructure coating for tracheostomy tubes to prevent ventilator-associated pneumonia (VAP) by inhibiting bacterial biofilm formation through combined superhydrophobic antifouling and sustained silver ion (Ag⁺) release.</div></div><div><h3>Methods</h3><div>Mesoporous silica nanoparticles (MSNs) were functionalized with octyltriethoxysilane (OTES) for superhydrophobicity (water contact angle: 162.8 ± 1°, sliding angle: 3.1 ± 0.5°) and loaded with 5–10 nm Ag₂O nanoparticles. Stability was evaluated via sandpaper abrasion tests (15 cycles, 120 g load) and short-term immersion (24 h) in pH 2–13 solutions. In vitro evaluations included quantification of bacterial adhesion (<em>P. aeruginosa, Escherichia coli, S. aureus</em>; 1 × 10⁸ CFU/mL), biofilm analysis by SEM/CLSM, and CCK-8 cytotoxicity assays with NIH/3T3 fibroblasts. In vivo, an 8-pig VAP model with hourly P. aeruginosa inoculation (1 × 10⁶ CFU/mL) was used to assess tracheal biofilm thickness, lung bacterial load, and inflammatory infiltration via H&amp;E staining.</div></div><div><h3>Results</h3><div>The coating retained superhydrophobicity after challenges, reduced bacterial adhesion by ≥90.2 % vs. uncoated controls in vitro with disrupted biofilms and &gt;95 % cell viability. In pigs, it reduced tracheal biofilm thickness by 65 % (<em>p</em> &lt; 0.05), lung bacterial load by 82 % (<em>p</em> &lt; 0.01), and neutrophil infiltration (<em>p</em> &lt; 0.05).</div></div><div><h3>Conclusion</h3><div>The Ag₂O-MSNs@OTES coating effectively combats VAP via synergistic effects, with favorable short-term stability, excellent biocompatibility, and low cost (&lt;$5/tube), supporting its potential for clinical translation. Further long-term stability tests are required to validate performance over extended clinical use.</div></div>\",\"PeriodicalId\":49836,\"journal\":{\"name\":\"Medical Engineering & Physics\",\"volume\":\"145 \",\"pages\":\"Article 104416\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Engineering & Physics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350453325001353\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453325001353","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的研制一种用于气管造口管的双纳米结构涂层,通过超疏水防污和银离子(Ag +)的持续释放抑制细菌生物膜的形成,预防呼吸机相关性肺炎(VAP)。方法采用辛基三乙基氧基硅烷(OTES)对多孔二氧化硅纳米颗粒(MSNs)进行超疏水性修饰(水接触角为162.8±1°,滑动角为3.1±0.5°),并负载5 ~ 10 nm Ag₂O纳米颗粒。通过砂纸磨损试验(15次循环,120 g负荷)和在pH 2-13溶液中短期浸泡(24 h)来评估稳定性。体外评价包括定量细菌粘附(铜绿假单胞菌、大肠杆菌、金黄色葡萄球菌;1 × 10⁸CFU/mL),扫描电镜/CLSM生物膜分析,以及NIH/3T3成纤维细胞CCK-8细胞毒性测定。在体内,采用每小时接种1 × 10 26 CFU/mL铜绿假单胞菌(P. aeruginosa)的8头猪VAP模型,通过H&;E染色评估气管生物膜厚度、肺部细菌负荷和炎症浸润。结果在生物膜被破坏的情况下,与未包被的对照组相比,包被在体外保持了超疏水性,细菌粘附率降低了≥90.2%,细胞活力降低了95%。在猪中,它使气管生物膜厚度减少65% (p < 0.05),肺细菌负荷减少82% (p < 0.01),中性粒细胞浸润减少(p < 0.05)。结论Ag₂O-MSNs@OTES涂层通过协同作用有效对抗VAP,具有较好的短期稳定性、良好的生物相容性和较低的成本(5美元/支),具有临床转化潜力。需要进一步的长期稳定性测试来验证延长临床使用的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synergistic dual-nanostructure antibacterial-antifouling coating for tracheostomy tubes to reduce ventilator-associated pneumonia

Objective

To develop a dual-nanostructure coating for tracheostomy tubes to prevent ventilator-associated pneumonia (VAP) by inhibiting bacterial biofilm formation through combined superhydrophobic antifouling and sustained silver ion (Ag⁺) release.

Methods

Mesoporous silica nanoparticles (MSNs) were functionalized with octyltriethoxysilane (OTES) for superhydrophobicity (water contact angle: 162.8 ± 1°, sliding angle: 3.1 ± 0.5°) and loaded with 5–10 nm Ag₂O nanoparticles. Stability was evaluated via sandpaper abrasion tests (15 cycles, 120 g load) and short-term immersion (24 h) in pH 2–13 solutions. In vitro evaluations included quantification of bacterial adhesion (P. aeruginosa, Escherichia coli, S. aureus; 1 × 10⁸ CFU/mL), biofilm analysis by SEM/CLSM, and CCK-8 cytotoxicity assays with NIH/3T3 fibroblasts. In vivo, an 8-pig VAP model with hourly P. aeruginosa inoculation (1 × 10⁶ CFU/mL) was used to assess tracheal biofilm thickness, lung bacterial load, and inflammatory infiltration via H&E staining.

Results

The coating retained superhydrophobicity after challenges, reduced bacterial adhesion by ≥90.2 % vs. uncoated controls in vitro with disrupted biofilms and >95 % cell viability. In pigs, it reduced tracheal biofilm thickness by 65 % (p < 0.05), lung bacterial load by 82 % (p < 0.01), and neutrophil infiltration (p < 0.05).

Conclusion

The Ag₂O-MSNs@OTES coating effectively combats VAP via synergistic effects, with favorable short-term stability, excellent biocompatibility, and low cost (<$5/tube), supporting its potential for clinical translation. Further long-term stability tests are required to validate performance over extended clinical use.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical Engineering & Physics
Medical Engineering & Physics 工程技术-工程:生物医学
CiteScore
4.30
自引率
4.50%
发文量
172
审稿时长
3.0 months
期刊介绍: Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信