使用像素化纳米光电机械光栅的超紧凑片上光谱整形

IF 45.8 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Science Pub Date : 2025-08-21 DOI:10.1126/science.adu8492
Weixin Liu, Siyu Xu, Chengkuo Lee
{"title":"使用像素化纳米光电机械光栅的超紧凑片上光谱整形","authors":"Weixin Liu,&nbsp;Siyu Xu,&nbsp;Chengkuo Lee","doi":"10.1126/science.adu8492","DOIUrl":null,"url":null,"abstract":"<div >The ability to shape light spectra dynamically and arbitrarily would revolutionize many photonic systems by offering unparalleled spectral efficiency and network flexibility. However, most existing optical components have rigid spectral functionalities with limited tunability, hindering compact and fast optical spectral shaping. We introduce a pixelated nano-opto-electro-mechanical (NOEM) grating that exploits electromechanically induced symmetry breaking for precise, pixel-level control of grating coupling strength, yielding a miniaturized (~0.007 square millimeters) on-chip spectral shaper. We demonstrate the synthesis of grating pixels for arbitrary spectral responses, and we achieved rapid (&lt;10 nanoseconds), high-contrast (&gt;100 decibels), wavelength-selective switching through collective, nanometer-scale electrostatic perturbations. Our pixelated NOEM grating delivers exceptional spectral manipulation capabilities in an ultracompact, on-chip manner, offering prospects for next-generation optical information networks, computing architectures, and beyond.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"389 6762","pages":""},"PeriodicalIF":45.8000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultracompact on-chip spectral shaping using pixelated nano-opto-electro-mechanical gratings\",\"authors\":\"Weixin Liu,&nbsp;Siyu Xu,&nbsp;Chengkuo Lee\",\"doi\":\"10.1126/science.adu8492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >The ability to shape light spectra dynamically and arbitrarily would revolutionize many photonic systems by offering unparalleled spectral efficiency and network flexibility. However, most existing optical components have rigid spectral functionalities with limited tunability, hindering compact and fast optical spectral shaping. We introduce a pixelated nano-opto-electro-mechanical (NOEM) grating that exploits electromechanically induced symmetry breaking for precise, pixel-level control of grating coupling strength, yielding a miniaturized (~0.007 square millimeters) on-chip spectral shaper. We demonstrate the synthesis of grating pixels for arbitrary spectral responses, and we achieved rapid (&lt;10 nanoseconds), high-contrast (&gt;100 decibels), wavelength-selective switching through collective, nanometer-scale electrostatic perturbations. Our pixelated NOEM grating delivers exceptional spectral manipulation capabilities in an ultracompact, on-chip manner, offering prospects for next-generation optical information networks, computing architectures, and beyond.</div>\",\"PeriodicalId\":21678,\"journal\":{\"name\":\"Science\",\"volume\":\"389 6762\",\"pages\":\"\"},\"PeriodicalIF\":45.8000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/science.adu8492\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adu8492","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

通过提供无与伦比的光谱效率和网络灵活性,动态和任意塑造光谱的能力将彻底改变许多光子系统。然而,大多数现有的光学元件具有严格的光谱功能和有限的可调性,阻碍了紧凑和快速的光谱整形。我们介绍了一种像素化纳米光电(NOEM)光栅,它利用机电诱导的对称破缺来精确地控制光栅耦合强度,从而产生小型化(~0.007平方毫米)的片上光谱整形器。我们演示了任意光谱响应的光栅像素合成,并通过集体纳米级静电扰动实现了快速(10纳秒)、高对比度(100分贝)、波长选择性切换。我们的像素化NOEM光栅以超紧凑的片上方式提供了卓越的光谱操作能力,为下一代光信息网络、计算架构等提供了前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultracompact on-chip spectral shaping using pixelated nano-opto-electro-mechanical gratings
The ability to shape light spectra dynamically and arbitrarily would revolutionize many photonic systems by offering unparalleled spectral efficiency and network flexibility. However, most existing optical components have rigid spectral functionalities with limited tunability, hindering compact and fast optical spectral shaping. We introduce a pixelated nano-opto-electro-mechanical (NOEM) grating that exploits electromechanically induced symmetry breaking for precise, pixel-level control of grating coupling strength, yielding a miniaturized (~0.007 square millimeters) on-chip spectral shaper. We demonstrate the synthesis of grating pixels for arbitrary spectral responses, and we achieved rapid (<10 nanoseconds), high-contrast (>100 decibels), wavelength-selective switching through collective, nanometer-scale electrostatic perturbations. Our pixelated NOEM grating delivers exceptional spectral manipulation capabilities in an ultracompact, on-chip manner, offering prospects for next-generation optical information networks, computing architectures, and beyond.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science
Science 综合性期刊-综合性期刊
CiteScore
61.10
自引率
0.90%
发文量
0
审稿时长
2.1 months
期刊介绍: Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research. Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated. Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信