{"title":"考虑低gwp的COF2替代PECVD室清洁气体","authors":"Ah Hyun Park;Yeonjin Lee;Seyun Jo;Sang Jeen Hong","doi":"10.1109/TSM.2025.3559471","DOIUrl":null,"url":null,"abstract":"Continuous deposition processes in PECVD environments are critical for ensuring the uniformity and reproducibility of thin films across various applications. Silicon dioxide (SiO2), widely used in these processes for its excellent properties, can leave residual materials in PECVD chambers, leading to material buildup that compromises process consistency and reproducibility. A representative example of compromised process consistency and reproducibility is found in the manufacturing of 3D-NAND flash memory, which involves oxide-nitride (ON) stacking processes. Effective chamber cleaning is essential to ensure consistent and reproducible performance in continuous deposition processes. Nitrogen trifluoride (NF3), a commonly used as chamber cleaning gas, is expected to be newly belong to the greenhouse gas regulations due to its high global warming potential (GWP), which may pose both environmental and industrial risks. In this study, we explored the potential of carbonyl fluoride (COF2) as an alternative chamber cleaning gas with low GWP, albeit with an inferior cleaning rate compared to NF3. This study investigates gas dissociation in the plasma environment and analyzes plasma species and changes in the deposited film surface affecting the cleaning rate. Based on the results, proposed improvements are made to the cleaning process design for COF2, considering factors influencing plasma enhanced chemical vapor deposition (PECVD) chamber cleaning efficiency.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"38 3","pages":"596-604"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Alternative PECVD Chamber Cleaning Gas of COF2 for Low-GWP Consideration\",\"authors\":\"Ah Hyun Park;Yeonjin Lee;Seyun Jo;Sang Jeen Hong\",\"doi\":\"10.1109/TSM.2025.3559471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Continuous deposition processes in PECVD environments are critical for ensuring the uniformity and reproducibility of thin films across various applications. Silicon dioxide (SiO2), widely used in these processes for its excellent properties, can leave residual materials in PECVD chambers, leading to material buildup that compromises process consistency and reproducibility. A representative example of compromised process consistency and reproducibility is found in the manufacturing of 3D-NAND flash memory, which involves oxide-nitride (ON) stacking processes. Effective chamber cleaning is essential to ensure consistent and reproducible performance in continuous deposition processes. Nitrogen trifluoride (NF3), a commonly used as chamber cleaning gas, is expected to be newly belong to the greenhouse gas regulations due to its high global warming potential (GWP), which may pose both environmental and industrial risks. In this study, we explored the potential of carbonyl fluoride (COF2) as an alternative chamber cleaning gas with low GWP, albeit with an inferior cleaning rate compared to NF3. This study investigates gas dissociation in the plasma environment and analyzes plasma species and changes in the deposited film surface affecting the cleaning rate. Based on the results, proposed improvements are made to the cleaning process design for COF2, considering factors influencing plasma enhanced chemical vapor deposition (PECVD) chamber cleaning efficiency.\",\"PeriodicalId\":451,\"journal\":{\"name\":\"IEEE Transactions on Semiconductor Manufacturing\",\"volume\":\"38 3\",\"pages\":\"596-604\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Semiconductor Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10960756/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Semiconductor Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10960756/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
An Alternative PECVD Chamber Cleaning Gas of COF2 for Low-GWP Consideration
Continuous deposition processes in PECVD environments are critical for ensuring the uniformity and reproducibility of thin films across various applications. Silicon dioxide (SiO2), widely used in these processes for its excellent properties, can leave residual materials in PECVD chambers, leading to material buildup that compromises process consistency and reproducibility. A representative example of compromised process consistency and reproducibility is found in the manufacturing of 3D-NAND flash memory, which involves oxide-nitride (ON) stacking processes. Effective chamber cleaning is essential to ensure consistent and reproducible performance in continuous deposition processes. Nitrogen trifluoride (NF3), a commonly used as chamber cleaning gas, is expected to be newly belong to the greenhouse gas regulations due to its high global warming potential (GWP), which may pose both environmental and industrial risks. In this study, we explored the potential of carbonyl fluoride (COF2) as an alternative chamber cleaning gas with low GWP, albeit with an inferior cleaning rate compared to NF3. This study investigates gas dissociation in the plasma environment and analyzes plasma species and changes in the deposited film surface affecting the cleaning rate. Based on the results, proposed improvements are made to the cleaning process design for COF2, considering factors influencing plasma enhanced chemical vapor deposition (PECVD) chamber cleaning efficiency.
期刊介绍:
The IEEE Transactions on Semiconductor Manufacturing addresses the challenging problems of manufacturing complex microelectronic components, especially very large scale integrated circuits (VLSI). Manufacturing these products requires precision micropatterning, precise control of materials properties, ultraclean work environments, and complex interactions of chemical, physical, electrical and mechanical processes.