双肌腱鞘变刚度模块外骨骼的肌电驱动辅助控制

IF 3.8 Q2 ENGINEERING, BIOMEDICAL
Qingcong Wu;Zijie Wang;Songshan Lu;Bai Chen;Hongtao Wu
{"title":"双肌腱鞘变刚度模块外骨骼的肌电驱动辅助控制","authors":"Qingcong Wu;Zijie Wang;Songshan Lu;Bai Chen;Hongtao Wu","doi":"10.1109/TMRB.2025.3589771","DOIUrl":null,"url":null,"abstract":"Exoskeletons play a huge role in human body enhancement and physical rehabilitation. In this paper, a new modular exoskeleton driven by double-tendon-sheath variable stiffness actuator (DTS-VSA) is designed to achieve effective human power assistance. The modular and variable stiffness structure of exoskeleton enable the adaptation to different human joint, improving the characteristics of physical human-robot interaction. The DTS-VSA is designed based on the pulley-cable-spring preloading principle and tendon sheath transmission, and its stiffness model is developed through quasi-static force balance analysis. To realize coordinated and active power argumentation, a fuzzy adaptive assistive controller integrated with human joint torque and stiffness estimation is proposed based on surface electromyography. Feasibility is experimentally verified via three typical load-carrying experiments and ten volunteers. The experimental results show that the average assistance efficiencies of elbow motion and knee motion in different experiment conditions are higher than 44.72% and 38.41%.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 3","pages":"1225-1236"},"PeriodicalIF":3.8000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"sEMG-Driven Assistive Control of a Modular Exoskeleton With Double-Tendon-Sheath Variable Stiffness Actuator\",\"authors\":\"Qingcong Wu;Zijie Wang;Songshan Lu;Bai Chen;Hongtao Wu\",\"doi\":\"10.1109/TMRB.2025.3589771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exoskeletons play a huge role in human body enhancement and physical rehabilitation. In this paper, a new modular exoskeleton driven by double-tendon-sheath variable stiffness actuator (DTS-VSA) is designed to achieve effective human power assistance. The modular and variable stiffness structure of exoskeleton enable the adaptation to different human joint, improving the characteristics of physical human-robot interaction. The DTS-VSA is designed based on the pulley-cable-spring preloading principle and tendon sheath transmission, and its stiffness model is developed through quasi-static force balance analysis. To realize coordinated and active power argumentation, a fuzzy adaptive assistive controller integrated with human joint torque and stiffness estimation is proposed based on surface electromyography. Feasibility is experimentally verified via three typical load-carrying experiments and ten volunteers. The experimental results show that the average assistance efficiencies of elbow motion and knee motion in different experiment conditions are higher than 44.72% and 38.41%.\",\"PeriodicalId\":73318,\"journal\":{\"name\":\"IEEE transactions on medical robotics and bionics\",\"volume\":\"7 3\",\"pages\":\"1225-1236\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical robotics and bionics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11081949/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11081949/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

外骨骼在人体增强和身体康复方面发挥着巨大的作用。本文设计了一种由双肌腱鞘变刚度作动器(DTS-VSA)驱动的模块化外骨骼,以实现有效的人力辅助。外骨骼的模块化和变刚度结构使其能够适应不同的人体关节,提高了人机物理交互特性。基于滑轮-索-弹簧预紧原理和腱鞘传动设计了DTS-VSA,并通过准静力平衡分析建立了其刚度模型。为实现协调有功功率参数,提出了一种基于表面肌电图的关节力矩和刚度模糊自适应辅助控制器。通过3个典型负重实验和10名志愿者实验验证了该方法的可行性。实验结果表明,不同实验条件下肘部运动和膝关节运动的平均辅助效率分别高于44.72%和38.41%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
sEMG-Driven Assistive Control of a Modular Exoskeleton With Double-Tendon-Sheath Variable Stiffness Actuator
Exoskeletons play a huge role in human body enhancement and physical rehabilitation. In this paper, a new modular exoskeleton driven by double-tendon-sheath variable stiffness actuator (DTS-VSA) is designed to achieve effective human power assistance. The modular and variable stiffness structure of exoskeleton enable the adaptation to different human joint, improving the characteristics of physical human-robot interaction. The DTS-VSA is designed based on the pulley-cable-spring preloading principle and tendon sheath transmission, and its stiffness model is developed through quasi-static force balance analysis. To realize coordinated and active power argumentation, a fuzzy adaptive assistive controller integrated with human joint torque and stiffness estimation is proposed based on surface electromyography. Feasibility is experimentally verified via three typical load-carrying experiments and ten volunteers. The experimental results show that the average assistance efficiencies of elbow motion and knee motion in different experiment conditions are higher than 44.72% and 38.41%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信