{"title":"MXenes作为控制ZnO薄膜p型电导率的工具","authors":"Lucky Agarwal;Ajay Kumar Dwivedi;Tulika Bajpai;Uvanesh Kasiviswanathan;Shweta Tripathi","doi":"10.1109/TSM.2025.3575857","DOIUrl":null,"url":null,"abstract":"This study demonstrates the selective tuning of p-type and n-type conductivity in ZnO thin films by incorporating MXenes at varying molar concentrations. ZnO thin films were fabricated using a cost-effective sol-gel method and annealed at 450°C under thermal and magnetically assisted conditions. Rietveld analysis of the hot point probe and Hall measurements were performed to confirm the conductivity variations induced by MXene doping. The results suggest that the conductivity of n-ZnO increased significantly from 0.27 mho/cm to 1274 mho/cm, while p-ZnO conductivity ranged from 0.0012 mho/cm to <inline-formula> <tex-math>$6.2\\times 10^{-4}$ </tex-math></inline-formula> mho/cm and <inline-formula> <tex-math>$3.3\\times 10^{-3}$ </tex-math></inline-formula> mho/cm to 0.84 mho/cm under magnetic fields of 280 G and 400 G, respectively. XRD analysis revealed a polycrystalline structure with an average grain size of about ~100 nm. This novel approach offers a versatile method to control ZnO thin-film conductivity, including an extensive analysis of magnetic properties.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"38 3","pages":"588-595"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MXenes as a Tool to Control p-Type Conductivity in ZnO Thin Film\",\"authors\":\"Lucky Agarwal;Ajay Kumar Dwivedi;Tulika Bajpai;Uvanesh Kasiviswanathan;Shweta Tripathi\",\"doi\":\"10.1109/TSM.2025.3575857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study demonstrates the selective tuning of p-type and n-type conductivity in ZnO thin films by incorporating MXenes at varying molar concentrations. ZnO thin films were fabricated using a cost-effective sol-gel method and annealed at 450°C under thermal and magnetically assisted conditions. Rietveld analysis of the hot point probe and Hall measurements were performed to confirm the conductivity variations induced by MXene doping. The results suggest that the conductivity of n-ZnO increased significantly from 0.27 mho/cm to 1274 mho/cm, while p-ZnO conductivity ranged from 0.0012 mho/cm to <inline-formula> <tex-math>$6.2\\\\times 10^{-4}$ </tex-math></inline-formula> mho/cm and <inline-formula> <tex-math>$3.3\\\\times 10^{-3}$ </tex-math></inline-formula> mho/cm to 0.84 mho/cm under magnetic fields of 280 G and 400 G, respectively. XRD analysis revealed a polycrystalline structure with an average grain size of about ~100 nm. This novel approach offers a versatile method to control ZnO thin-film conductivity, including an extensive analysis of magnetic properties.\",\"PeriodicalId\":451,\"journal\":{\"name\":\"IEEE Transactions on Semiconductor Manufacturing\",\"volume\":\"38 3\",\"pages\":\"588-595\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Semiconductor Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11021424/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Semiconductor Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11021424/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
MXenes as a Tool to Control p-Type Conductivity in ZnO Thin Film
This study demonstrates the selective tuning of p-type and n-type conductivity in ZnO thin films by incorporating MXenes at varying molar concentrations. ZnO thin films were fabricated using a cost-effective sol-gel method and annealed at 450°C under thermal and magnetically assisted conditions. Rietveld analysis of the hot point probe and Hall measurements were performed to confirm the conductivity variations induced by MXene doping. The results suggest that the conductivity of n-ZnO increased significantly from 0.27 mho/cm to 1274 mho/cm, while p-ZnO conductivity ranged from 0.0012 mho/cm to $6.2\times 10^{-4}$ mho/cm and $3.3\times 10^{-3}$ mho/cm to 0.84 mho/cm under magnetic fields of 280 G and 400 G, respectively. XRD analysis revealed a polycrystalline structure with an average grain size of about ~100 nm. This novel approach offers a versatile method to control ZnO thin-film conductivity, including an extensive analysis of magnetic properties.
期刊介绍:
The IEEE Transactions on Semiconductor Manufacturing addresses the challenging problems of manufacturing complex microelectronic components, especially very large scale integrated circuits (VLSI). Manufacturing these products requires precision micropatterning, precise control of materials properties, ultraclean work environments, and complex interactions of chemical, physical, electrical and mechanical processes.