用于皮肤癌筛查的热成像系统和机器学习分类算法

IF 3.8 Q2 ENGINEERING, BIOMEDICAL
V. Mainardi;M. Dal Canto;T. Melillo;N. Lorenzini;G. Bagnoni;S. Moccia;G. Ciuti
{"title":"用于皮肤癌筛查的热成像系统和机器学习分类算法","authors":"V. Mainardi;M. Dal Canto;T. Melillo;N. Lorenzini;G. Bagnoni;S. Moccia;G. Ciuti","doi":"10.1109/TMRB.2025.3560390","DOIUrl":null,"url":null,"abstract":"Skin cancer affects over 2 million people worldwide each year. Although dermoscopy is the gold standard screening technique, it only assesses the superficial features of skin lesions. Novel approaches based on thermal investigation have revealed a correlation between thermal recovery and vascular pattern alterations, which is an important factor in discriminating malignant and benign lesions. In this study, a dynamic thermal-imaging system was designed, developed, and validated in a real clinical scenario. The system is non-invasive, compact, and cost-effective, comprising a cooling probe and an image acquisition system equipped with RGB and thermal cameras. The system incorporates a machine-learning classification algorithm for skin cancer screening. The system showed an accuracy of 89.7% in distinguishing between malignant and benign lesions in a case study involving 58 patients and classified sub-classes of lesions (i.e., melanoma and nevi) with an accuracy of 95.5%. These findings underscore the potential benefit of the proposed dynamic thermal-imaging system as a support tool for non-invasive screening and early detection of malignant skin lesions.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 3","pages":"938-949"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Thermal-Imaging System and Machine-Learning Classification Algorithm for Skin Cancer Screening\",\"authors\":\"V. Mainardi;M. Dal Canto;T. Melillo;N. Lorenzini;G. Bagnoni;S. Moccia;G. Ciuti\",\"doi\":\"10.1109/TMRB.2025.3560390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Skin cancer affects over 2 million people worldwide each year. Although dermoscopy is the gold standard screening technique, it only assesses the superficial features of skin lesions. Novel approaches based on thermal investigation have revealed a correlation between thermal recovery and vascular pattern alterations, which is an important factor in discriminating malignant and benign lesions. In this study, a dynamic thermal-imaging system was designed, developed, and validated in a real clinical scenario. The system is non-invasive, compact, and cost-effective, comprising a cooling probe and an image acquisition system equipped with RGB and thermal cameras. The system incorporates a machine-learning classification algorithm for skin cancer screening. The system showed an accuracy of 89.7% in distinguishing between malignant and benign lesions in a case study involving 58 patients and classified sub-classes of lesions (i.e., melanoma and nevi) with an accuracy of 95.5%. These findings underscore the potential benefit of the proposed dynamic thermal-imaging system as a support tool for non-invasive screening and early detection of malignant skin lesions.\",\"PeriodicalId\":73318,\"journal\":{\"name\":\"IEEE transactions on medical robotics and bionics\",\"volume\":\"7 3\",\"pages\":\"938-949\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical robotics and bionics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10964333/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10964333/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

皮肤癌每年影响全球200多万人。虽然皮肤镜检查是金标准筛查技术,但它只评估皮肤病变的表面特征。基于热研究的新方法揭示了热恢复与血管模式改变之间的相关性,这是区分恶性和良性病变的重要因素。在这项研究中,动态热成像系统被设计,开发,并在一个真实的临床场景验证。该系统具有非侵入性、紧凑性和成本效益,包括一个冷却探头和一个配备RGB和热像仪的图像采集系统。该系统结合了一种用于皮肤癌筛查的机器学习分类算法。在涉及58例患者的病例研究中,该系统在区分恶性和良性病变方面的准确率为89.7%,并对病变的亚类(即黑色素瘤和痣)进行了分类,准确率为95.5%。这些发现强调了动态热成像系统作为非侵入性筛查和早期发现恶性皮肤病变的辅助工具的潜在益处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Thermal-Imaging System and Machine-Learning Classification Algorithm for Skin Cancer Screening
Skin cancer affects over 2 million people worldwide each year. Although dermoscopy is the gold standard screening technique, it only assesses the superficial features of skin lesions. Novel approaches based on thermal investigation have revealed a correlation between thermal recovery and vascular pattern alterations, which is an important factor in discriminating malignant and benign lesions. In this study, a dynamic thermal-imaging system was designed, developed, and validated in a real clinical scenario. The system is non-invasive, compact, and cost-effective, comprising a cooling probe and an image acquisition system equipped with RGB and thermal cameras. The system incorporates a machine-learning classification algorithm for skin cancer screening. The system showed an accuracy of 89.7% in distinguishing between malignant and benign lesions in a case study involving 58 patients and classified sub-classes of lesions (i.e., melanoma and nevi) with an accuracy of 95.5%. These findings underscore the potential benefit of the proposed dynamic thermal-imaging system as a support tool for non-invasive screening and early detection of malignant skin lesions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信