基于双分支辅助分类的半监督光刻热点检测模型

IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Hui Xu;Wenxin Huang;Xinzhong Xiao;Ye Yuan;Ruijun Ma;Fuxin Tang;Pan Qi;Huaguo Liang
{"title":"基于双分支辅助分类的半监督光刻热点检测模型","authors":"Hui Xu;Wenxin Huang;Xinzhong Xiao;Ye Yuan;Ruijun Ma;Fuxin Tang;Pan Qi;Huaguo Liang","doi":"10.1109/TSM.2025.3586456","DOIUrl":null,"url":null,"abstract":"Due to the low accuracy and high false alarm rate of conventional semisupervised lithography hotspot detection models, we propose a semisupervised hotspot detection model based on dual-branch auxiliary classification comprising a classification stream, a dual-branch auxiliary classification stream, and a clustering stream. The classification stream assigns labels to input samples. The auxiliary classification stream consisting of two branches validates the classification results. Moreover, the clustering stream estimates the confidence of the sample labels. Due to the imbalance of the dataset, the model integrates a random data augmentation method to increase the hotspot samples and thus enhance model performance. Additionally, false positive rate (FPR) is used to assess model performance across all benchmarks in the ICCAD 2012 dataset. The experimental results demonstrate that our model achieves higher accuracy and a lower FPR while requiring less overall detection and simulation time across different proportions of labeled samples compared with the state-of-the-art model.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"38 3","pages":"522-532"},"PeriodicalIF":2.3000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semisupervised Lithography Hotspot Detection Model Based on Dual-Branch Auxiliary Classification\",\"authors\":\"Hui Xu;Wenxin Huang;Xinzhong Xiao;Ye Yuan;Ruijun Ma;Fuxin Tang;Pan Qi;Huaguo Liang\",\"doi\":\"10.1109/TSM.2025.3586456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the low accuracy and high false alarm rate of conventional semisupervised lithography hotspot detection models, we propose a semisupervised hotspot detection model based on dual-branch auxiliary classification comprising a classification stream, a dual-branch auxiliary classification stream, and a clustering stream. The classification stream assigns labels to input samples. The auxiliary classification stream consisting of two branches validates the classification results. Moreover, the clustering stream estimates the confidence of the sample labels. Due to the imbalance of the dataset, the model integrates a random data augmentation method to increase the hotspot samples and thus enhance model performance. Additionally, false positive rate (FPR) is used to assess model performance across all benchmarks in the ICCAD 2012 dataset. The experimental results demonstrate that our model achieves higher accuracy and a lower FPR while requiring less overall detection and simulation time across different proportions of labeled samples compared with the state-of-the-art model.\",\"PeriodicalId\":451,\"journal\":{\"name\":\"IEEE Transactions on Semiconductor Manufacturing\",\"volume\":\"38 3\",\"pages\":\"522-532\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Semiconductor Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11072204/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Semiconductor Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11072204/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

针对传统半监督光刻热点检测模型准确率低、虚警率高的问题,提出了一种基于双分支辅助分类的半监督热点检测模型,该模型由分类流、双分支辅助分类流和聚类流组成。分类流为输入样本分配标签。由两个分支组成的辅助分类流验证分类结果。此外,聚类流估计样本标签的置信度。由于数据集的不平衡性,该模型集成了随机数据增强方法来增加热点样本,从而提高模型性能。此外,假阳性率(FPR)用于评估ICCAD 2012数据集中所有基准的模型性能。实验结果表明,与最先进的模型相比,我们的模型在不同比例的标记样品上实现了更高的精度和更低的FPR,同时需要更少的总体检测和模拟时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semisupervised Lithography Hotspot Detection Model Based on Dual-Branch Auxiliary Classification
Due to the low accuracy and high false alarm rate of conventional semisupervised lithography hotspot detection models, we propose a semisupervised hotspot detection model based on dual-branch auxiliary classification comprising a classification stream, a dual-branch auxiliary classification stream, and a clustering stream. The classification stream assigns labels to input samples. The auxiliary classification stream consisting of two branches validates the classification results. Moreover, the clustering stream estimates the confidence of the sample labels. Due to the imbalance of the dataset, the model integrates a random data augmentation method to increase the hotspot samples and thus enhance model performance. Additionally, false positive rate (FPR) is used to assess model performance across all benchmarks in the ICCAD 2012 dataset. The experimental results demonstrate that our model achieves higher accuracy and a lower FPR while requiring less overall detection and simulation time across different proportions of labeled samples compared with the state-of-the-art model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Semiconductor Manufacturing
IEEE Transactions on Semiconductor Manufacturing 工程技术-工程:电子与电气
CiteScore
5.20
自引率
11.10%
发文量
101
审稿时长
3.3 months
期刊介绍: The IEEE Transactions on Semiconductor Manufacturing addresses the challenging problems of manufacturing complex microelectronic components, especially very large scale integrated circuits (VLSI). Manufacturing these products requires precision micropatterning, precise control of materials properties, ultraclean work environments, and complex interactions of chemical, physical, electrical and mechanical processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信