{"title":"当前李超代数sl(1|2)的梯度表示[t]","authors":"Shushma Rani , Divya Setia","doi":"10.1016/j.laa.2025.08.007","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study finite-dimensional graded representations of the current Lie superalgebra <span><math><mrow><mi>sl</mi></mrow><mo>(</mo><mn>1</mn><mo>|</mo><mn>2</mn><mo>)</mo><mo>[</mo><mi>t</mi><mo>]</mo></math></span>. We define the notion of super POPs, a combinatorial tool to provide another parametrization of the basis of the local Weyl module given by Brito, Calixto and Macedo. We derive the graded character formula of the local Weyl module for <span><math><mrow><mi>sl</mi></mrow><mo>(</mo><mn>1</mn><mo>|</mo><mn>2</mn><mo>)</mo><mo>[</mo><mi>t</mi><mo>]</mo></math></span>. Furthermore, we construct a short exact sequence of Chari-Venkatesh modules for <span><math><mrow><mi>sl</mi></mrow><mo>(</mo><mn>1</mn><mo>|</mo><mn>2</mn><mo>)</mo><mo>[</mo><mi>t</mi><mo>]</mo></math></span>. As a consequence, we prove that Chari-Venkatesh modules are isomorphic to the fusion product of generalized Kac modules.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"727 ","pages":"Pages 178-202"},"PeriodicalIF":1.1000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graded representations of current Lie superalgebra sl(1|2)[t]\",\"authors\":\"Shushma Rani , Divya Setia\",\"doi\":\"10.1016/j.laa.2025.08.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study finite-dimensional graded representations of the current Lie superalgebra <span><math><mrow><mi>sl</mi></mrow><mo>(</mo><mn>1</mn><mo>|</mo><mn>2</mn><mo>)</mo><mo>[</mo><mi>t</mi><mo>]</mo></math></span>. We define the notion of super POPs, a combinatorial tool to provide another parametrization of the basis of the local Weyl module given by Brito, Calixto and Macedo. We derive the graded character formula of the local Weyl module for <span><math><mrow><mi>sl</mi></mrow><mo>(</mo><mn>1</mn><mo>|</mo><mn>2</mn><mo>)</mo><mo>[</mo><mi>t</mi><mo>]</mo></math></span>. Furthermore, we construct a short exact sequence of Chari-Venkatesh modules for <span><math><mrow><mi>sl</mi></mrow><mo>(</mo><mn>1</mn><mo>|</mo><mn>2</mn><mo>)</mo><mo>[</mo><mi>t</mi><mo>]</mo></math></span>. As a consequence, we prove that Chari-Venkatesh modules are isomorphic to the fusion product of generalized Kac modules.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"727 \",\"pages\":\"Pages 178-202\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002437952500343X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002437952500343X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Graded representations of current Lie superalgebra sl(1|2)[t]
In this paper, we study finite-dimensional graded representations of the current Lie superalgebra . We define the notion of super POPs, a combinatorial tool to provide another parametrization of the basis of the local Weyl module given by Brito, Calixto and Macedo. We derive the graded character formula of the local Weyl module for . Furthermore, we construct a short exact sequence of Chari-Venkatesh modules for . As a consequence, we prove that Chari-Venkatesh modules are isomorphic to the fusion product of generalized Kac modules.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.