当前李超代数sl(1|2)的梯度表示[t]

IF 1.1 3区 数学 Q1 MATHEMATICS
Shushma Rani , Divya Setia
{"title":"当前李超代数sl(1|2)的梯度表示[t]","authors":"Shushma Rani ,&nbsp;Divya Setia","doi":"10.1016/j.laa.2025.08.007","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study finite-dimensional graded representations of the current Lie superalgebra <span><math><mrow><mi>sl</mi></mrow><mo>(</mo><mn>1</mn><mo>|</mo><mn>2</mn><mo>)</mo><mo>[</mo><mi>t</mi><mo>]</mo></math></span>. We define the notion of super POPs, a combinatorial tool to provide another parametrization of the basis of the local Weyl module given by Brito, Calixto and Macedo. We derive the graded character formula of the local Weyl module for <span><math><mrow><mi>sl</mi></mrow><mo>(</mo><mn>1</mn><mo>|</mo><mn>2</mn><mo>)</mo><mo>[</mo><mi>t</mi><mo>]</mo></math></span>. Furthermore, we construct a short exact sequence of Chari-Venkatesh modules for <span><math><mrow><mi>sl</mi></mrow><mo>(</mo><mn>1</mn><mo>|</mo><mn>2</mn><mo>)</mo><mo>[</mo><mi>t</mi><mo>]</mo></math></span>. As a consequence, we prove that Chari-Venkatesh modules are isomorphic to the fusion product of generalized Kac modules.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"727 ","pages":"Pages 178-202"},"PeriodicalIF":1.1000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graded representations of current Lie superalgebra sl(1|2)[t]\",\"authors\":\"Shushma Rani ,&nbsp;Divya Setia\",\"doi\":\"10.1016/j.laa.2025.08.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study finite-dimensional graded representations of the current Lie superalgebra <span><math><mrow><mi>sl</mi></mrow><mo>(</mo><mn>1</mn><mo>|</mo><mn>2</mn><mo>)</mo><mo>[</mo><mi>t</mi><mo>]</mo></math></span>. We define the notion of super POPs, a combinatorial tool to provide another parametrization of the basis of the local Weyl module given by Brito, Calixto and Macedo. We derive the graded character formula of the local Weyl module for <span><math><mrow><mi>sl</mi></mrow><mo>(</mo><mn>1</mn><mo>|</mo><mn>2</mn><mo>)</mo><mo>[</mo><mi>t</mi><mo>]</mo></math></span>. Furthermore, we construct a short exact sequence of Chari-Venkatesh modules for <span><math><mrow><mi>sl</mi></mrow><mo>(</mo><mn>1</mn><mo>|</mo><mn>2</mn><mo>)</mo><mo>[</mo><mi>t</mi><mo>]</mo></math></span>. As a consequence, we prove that Chari-Venkatesh modules are isomorphic to the fusion product of generalized Kac modules.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"727 \",\"pages\":\"Pages 178-202\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002437952500343X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002437952500343X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了当前李超代数sl(1|2)的有限维渐变表示[t]。我们定义了超级持久性有机污染物的概念,这是一种组合工具,可以为Brito, Calixto和Macedo给出的本地Weyl模块提供另一种参数化基础。我们导出了sl(1 bb0 2)的局部Weyl模的梯度字符公式[t]。此外,我们构建了sl(1|2)的Chari-Venkatesh模块的短精确序列[t]。由此证明了Chari-Venkatesh模与广义Kac模的融合积是同构的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graded representations of current Lie superalgebra sl(1|2)[t]
In this paper, we study finite-dimensional graded representations of the current Lie superalgebra sl(1|2)[t]. We define the notion of super POPs, a combinatorial tool to provide another parametrization of the basis of the local Weyl module given by Brito, Calixto and Macedo. We derive the graded character formula of the local Weyl module for sl(1|2)[t]. Furthermore, we construct a short exact sequence of Chari-Venkatesh modules for sl(1|2)[t]. As a consequence, we prove that Chari-Venkatesh modules are isomorphic to the fusion product of generalized Kac modules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信