{"title":"SOI量子点中空穴自旋量子比特的模拟:不同几何形状的比较","authors":"Lorenzo Raschi, Antonio Gnudi","doi":"10.1016/j.sse.2025.109201","DOIUrl":null,"url":null,"abstract":"<div><div>Hole spins in semiconductor quantum dots are a promising path to implement electrically controlled qubits. This work compares different geometries of hole spin qubits implemented in SOI quantum dots with different nanowire orientations. The goal is to optimize geometry and nanowire orientation to maximize the Rabi frequency for a given RF drive amplitude, based on the theory in Venitucci et al. (2018). The hole eigenfunctions are calculated using the <span><math><mrow><mi>k</mi><mi>⋅</mi><mi>p</mi></mrow></math></span> model within a COMSOL-based framework. The <span><math><mi>g</mi></math></span>-matrix formalism is exploited to compute Rabi frequency as a function of the magnetic field orientation.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"229 ","pages":"Article 109201"},"PeriodicalIF":1.4000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of hole spin qubits in SOI quantum dots: Comparison between different geometries\",\"authors\":\"Lorenzo Raschi, Antonio Gnudi\",\"doi\":\"10.1016/j.sse.2025.109201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hole spins in semiconductor quantum dots are a promising path to implement electrically controlled qubits. This work compares different geometries of hole spin qubits implemented in SOI quantum dots with different nanowire orientations. The goal is to optimize geometry and nanowire orientation to maximize the Rabi frequency for a given RF drive amplitude, based on the theory in Venitucci et al. (2018). The hole eigenfunctions are calculated using the <span><math><mrow><mi>k</mi><mi>⋅</mi><mi>p</mi></mrow></math></span> model within a COMSOL-based framework. The <span><math><mi>g</mi></math></span>-matrix formalism is exploited to compute Rabi frequency as a function of the magnetic field orientation.</div></div>\",\"PeriodicalId\":21909,\"journal\":{\"name\":\"Solid-state Electronics\",\"volume\":\"229 \",\"pages\":\"Article 109201\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid-state Electronics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038110125001467\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110125001467","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Simulation of hole spin qubits in SOI quantum dots: Comparison between different geometries
Hole spins in semiconductor quantum dots are a promising path to implement electrically controlled qubits. This work compares different geometries of hole spin qubits implemented in SOI quantum dots with different nanowire orientations. The goal is to optimize geometry and nanowire orientation to maximize the Rabi frequency for a given RF drive amplitude, based on the theory in Venitucci et al. (2018). The hole eigenfunctions are calculated using the model within a COMSOL-based framework. The -matrix formalism is exploited to compute Rabi frequency as a function of the magnetic field orientation.
期刊介绍:
It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.