{"title":"半导体器件异质结构中ZnO界面工程实现MoS 2的N/P掺杂","authors":"Lijun Xu;Guohui Zhan;Kun Luo;Yukun Shi;Pengcong Mu;Yan Liu;Qinzhi Xu;Jiangtao Liu;Zhenhua Wu","doi":"10.1109/JEDS.2025.3594757","DOIUrl":null,"url":null,"abstract":"The aim of this study is to explore the electronic properties of the MoS2/ZnO heterostructure and their potential applications in semiconductor devices. We analyzed the impact of N/P doping on electronic properties of ZnO structures with different terminations using the Density Functional Theory-Non-Equilibrium Green’s Function (DFT-NEGF). H-passivation treatment significantly affects doping, enabling precise adjustment of interface charge distribution for improved electrical performance. Additionally, the transport properties of doped MoS2 devices have been significantly improved at different spacer lengths. Particularly under ballistic transport conditions, the current of the doped devices has increased by approximately four orders of magnitude compared to the undoped devices. These findings have important theoretical and practical implications for the design and optimization of high-performance electronic devices based on two-dimensional materials.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"13 ","pages":"976-982"},"PeriodicalIF":2.4000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11106822","citationCount":"0","resultStr":"{\"title\":\"Achieving N/P Doping of MoS₂ Through ZnO Interface Engineering in Heterostructures for Semiconductor Devices\",\"authors\":\"Lijun Xu;Guohui Zhan;Kun Luo;Yukun Shi;Pengcong Mu;Yan Liu;Qinzhi Xu;Jiangtao Liu;Zhenhua Wu\",\"doi\":\"10.1109/JEDS.2025.3594757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this study is to explore the electronic properties of the MoS2/ZnO heterostructure and their potential applications in semiconductor devices. We analyzed the impact of N/P doping on electronic properties of ZnO structures with different terminations using the Density Functional Theory-Non-Equilibrium Green’s Function (DFT-NEGF). H-passivation treatment significantly affects doping, enabling precise adjustment of interface charge distribution for improved electrical performance. Additionally, the transport properties of doped MoS2 devices have been significantly improved at different spacer lengths. Particularly under ballistic transport conditions, the current of the doped devices has increased by approximately four orders of magnitude compared to the undoped devices. These findings have important theoretical and practical implications for the design and optimization of high-performance electronic devices based on two-dimensional materials.\",\"PeriodicalId\":13210,\"journal\":{\"name\":\"IEEE Journal of the Electron Devices Society\",\"volume\":\"13 \",\"pages\":\"976-982\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11106822\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of the Electron Devices Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11106822/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11106822/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Achieving N/P Doping of MoS₂ Through ZnO Interface Engineering in Heterostructures for Semiconductor Devices
The aim of this study is to explore the electronic properties of the MoS2/ZnO heterostructure and their potential applications in semiconductor devices. We analyzed the impact of N/P doping on electronic properties of ZnO structures with different terminations using the Density Functional Theory-Non-Equilibrium Green’s Function (DFT-NEGF). H-passivation treatment significantly affects doping, enabling precise adjustment of interface charge distribution for improved electrical performance. Additionally, the transport properties of doped MoS2 devices have been significantly improved at different spacer lengths. Particularly under ballistic transport conditions, the current of the doped devices has increased by approximately four orders of magnitude compared to the undoped devices. These findings have important theoretical and practical implications for the design and optimization of high-performance electronic devices based on two-dimensional materials.
期刊介绍:
The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.