L. Colonel , K. Blanco , S. Tardif , P.E. Acosta Alba , F. Mazen , J. Eymery , D. Landru , F. Rieutord
{"title":"智能切割™技术中的断裂动力学:晶圆变形测量","authors":"L. Colonel , K. Blanco , S. Tardif , P.E. Acosta Alba , F. Mazen , J. Eymery , D. Landru , F. Rieutord","doi":"10.1016/j.sse.2025.109218","DOIUrl":null,"url":null,"abstract":"<div><div>High-Speed Cameras help in characterizing the splitting step in the Smart Cut™ technology. Full wafer-scale deformation monitoring upon annealing is then possible. This paper describes the setup, equipment and methodology used to estimate the backside wafer deformation and curvature upon fracture propagation in situ during the fracture step. Finally, with such a setup, the fracture process of a SOI-ready structure is studied dynamically over the whole propagation time scale. These results are consistent with literature work performed using punctual measurements methods and will allow in the future to emphasize the effect of process’ and structure’s geometry.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"229 ","pages":"Article 109218"},"PeriodicalIF":1.4000,"publicationDate":"2025-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fracture dynamics in Smart Cut™ technology: Wafer deformation measurement\",\"authors\":\"L. Colonel , K. Blanco , S. Tardif , P.E. Acosta Alba , F. Mazen , J. Eymery , D. Landru , F. Rieutord\",\"doi\":\"10.1016/j.sse.2025.109218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High-Speed Cameras help in characterizing the splitting step in the Smart Cut™ technology. Full wafer-scale deformation monitoring upon annealing is then possible. This paper describes the setup, equipment and methodology used to estimate the backside wafer deformation and curvature upon fracture propagation in situ during the fracture step. Finally, with such a setup, the fracture process of a SOI-ready structure is studied dynamically over the whole propagation time scale. These results are consistent with literature work performed using punctual measurements methods and will allow in the future to emphasize the effect of process’ and structure’s geometry.</div></div>\",\"PeriodicalId\":21909,\"journal\":{\"name\":\"Solid-state Electronics\",\"volume\":\"229 \",\"pages\":\"Article 109218\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid-state Electronics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038110125001637\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110125001637","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Fracture dynamics in Smart Cut™ technology: Wafer deformation measurement
High-Speed Cameras help in characterizing the splitting step in the Smart Cut™ technology. Full wafer-scale deformation monitoring upon annealing is then possible. This paper describes the setup, equipment and methodology used to estimate the backside wafer deformation and curvature upon fracture propagation in situ during the fracture step. Finally, with such a setup, the fracture process of a SOI-ready structure is studied dynamically over the whole propagation time scale. These results are consistent with literature work performed using punctual measurements methods and will allow in the future to emphasize the effect of process’ and structure’s geometry.
期刊介绍:
It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.