kagom ZrFe2铁磁体的大室温异常霍尔效应和能司特效应

IF 9.7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Wei Ren , Wei Li , Guofang Feng , Liting Jiang , Jing Gan , Yuyang Han , Xiaohua Luo , Changcai Chen , Chunsheng Fang , Shengcan Ma
{"title":"kagom<s:1> ZrFe2铁磁体的大室温异常霍尔效应和能司特效应","authors":"Wei Ren ,&nbsp;Wei Li ,&nbsp;Guofang Feng ,&nbsp;Liting Jiang ,&nbsp;Jing Gan ,&nbsp;Yuyang Han ,&nbsp;Xiaohua Luo ,&nbsp;Changcai Chen ,&nbsp;Chunsheng Fang ,&nbsp;Shengcan Ma","doi":"10.1016/j.mtphys.2025.101838","DOIUrl":null,"url":null,"abstract":"<div><div>Recent progress in Kagomé-lattice metals has established these materials as an unique platform for exploring frustrated lattice geometries and quantum topological phenomena. In the present study, polycrystalline ZrFe<sub>2</sub> with Kagomé-lattice structure was synthesized, enabling systematic investigation of anomalous Hall and Nernst effects through comprehensive electrical, thermal, and thermoelectric measurements complemented by first-principles calculations. It is observed that ZrFe<sub>2</sub> is a ferromagnet with the Curie temperature <em>T</em><sub>C</sub> ∼623 K, which displays a two-dimensional Kagomé structure along the [111] direction and equivalent planes. Strikingly, large anomalous Hall conductivity (AHC, <span><math><mrow><msubsup><mi>σ</mi><mrow><mi>x</mi><mi>y</mi></mrow><mi>A</mi></msubsup></mrow></math></span> ∼382.4 Ω<sup>−1</sup> cm<sup>−1</sup>) and anomalous Nernst conductivity (ANC, <span><math><mrow><msubsup><mi>α</mi><mrow><mi>y</mi><mi>x</mi></mrow><mi>A</mi></msubsup></mrow></math></span> ∼2.1 A m<sup>−1</sup> K<sup>−1</sup>) were obtained at room temperature (300 K). Theoretical analysis reveals that these prominent transport properties predominantly stem from the intrinsic Berry curvature (BC) mechanism. First-principles calculations further demonstrate substantial BC accumulation near the Fermi level <em>E</em><sub>F</sub>, providing fundamental insights into the origin of enhanced AHC and ANC. These findings not only expand the material exploration landscape for large anomalous Hall and Nernst effects but also highlight ZrFe<sub>2</sub> as a promising candidate for Hall-effect devices and thermoelectric applications, particularly due to its robust magnetic properties and topological features in the Kagomé lattice structure.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"57 ","pages":"Article 101838"},"PeriodicalIF":9.7000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large room temperature anomalous Hall and Nernst effects in Kagomé ZrFe2 ferromagnet\",\"authors\":\"Wei Ren ,&nbsp;Wei Li ,&nbsp;Guofang Feng ,&nbsp;Liting Jiang ,&nbsp;Jing Gan ,&nbsp;Yuyang Han ,&nbsp;Xiaohua Luo ,&nbsp;Changcai Chen ,&nbsp;Chunsheng Fang ,&nbsp;Shengcan Ma\",\"doi\":\"10.1016/j.mtphys.2025.101838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recent progress in Kagomé-lattice metals has established these materials as an unique platform for exploring frustrated lattice geometries and quantum topological phenomena. In the present study, polycrystalline ZrFe<sub>2</sub> with Kagomé-lattice structure was synthesized, enabling systematic investigation of anomalous Hall and Nernst effects through comprehensive electrical, thermal, and thermoelectric measurements complemented by first-principles calculations. It is observed that ZrFe<sub>2</sub> is a ferromagnet with the Curie temperature <em>T</em><sub>C</sub> ∼623 K, which displays a two-dimensional Kagomé structure along the [111] direction and equivalent planes. Strikingly, large anomalous Hall conductivity (AHC, <span><math><mrow><msubsup><mi>σ</mi><mrow><mi>x</mi><mi>y</mi></mrow><mi>A</mi></msubsup></mrow></math></span> ∼382.4 Ω<sup>−1</sup> cm<sup>−1</sup>) and anomalous Nernst conductivity (ANC, <span><math><mrow><msubsup><mi>α</mi><mrow><mi>y</mi><mi>x</mi></mrow><mi>A</mi></msubsup></mrow></math></span> ∼2.1 A m<sup>−1</sup> K<sup>−1</sup>) were obtained at room temperature (300 K). Theoretical analysis reveals that these prominent transport properties predominantly stem from the intrinsic Berry curvature (BC) mechanism. First-principles calculations further demonstrate substantial BC accumulation near the Fermi level <em>E</em><sub>F</sub>, providing fundamental insights into the origin of enhanced AHC and ANC. These findings not only expand the material exploration landscape for large anomalous Hall and Nernst effects but also highlight ZrFe<sub>2</sub> as a promising candidate for Hall-effect devices and thermoelectric applications, particularly due to its robust magnetic properties and topological features in the Kagomé lattice structure.</div></div>\",\"PeriodicalId\":18253,\"journal\":{\"name\":\"Materials Today Physics\",\"volume\":\"57 \",\"pages\":\"Article 101838\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542529325001944\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325001944","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

最近在kagomacom -晶格金属方面的进展使这些材料成为探索受挫晶格几何和量子拓扑现象的独特平台。在本研究中,合成了具有kagom晶格结构的多晶ZrFe2,通过综合电、热、热电测量和第一原理计算,系统地研究了异常霍尔效应和能司特效应。ZrFe2是一种居里温度为TC ~ 623 K的铁磁体,沿[111]方向和等效面呈现二维kagom结构。值得注意的是,在室温(300 K)下获得了较大的异常霍尔电导率(AHC, σxyA ~ 382.4 Ω−1 cm−1)和异常能司特电导率(ANC, αyxA ~ 2.1 A m−1 K−1)。理论分析表明,这些突出的输运性质主要源于本征贝瑞曲率(BC)机制。第一性原理计算进一步证明了费米能级EF附近大量的BC积累,为增强的AHC和ANC的起源提供了基本的见解。这些发现不仅扩大了大型异常霍尔效应和能斯特效应的材料探索领域,而且还突出了ZrFe2作为霍尔效应器件和热电应用的有前途的候选者,特别是由于其强大的磁性和kagom晶格结构中的拓扑特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large room temperature anomalous Hall and Nernst effects in Kagomé ZrFe2 ferromagnet
Recent progress in Kagomé-lattice metals has established these materials as an unique platform for exploring frustrated lattice geometries and quantum topological phenomena. In the present study, polycrystalline ZrFe2 with Kagomé-lattice structure was synthesized, enabling systematic investigation of anomalous Hall and Nernst effects through comprehensive electrical, thermal, and thermoelectric measurements complemented by first-principles calculations. It is observed that ZrFe2 is a ferromagnet with the Curie temperature TC ∼623 K, which displays a two-dimensional Kagomé structure along the [111] direction and equivalent planes. Strikingly, large anomalous Hall conductivity (AHC, σxyA ∼382.4 Ω−1 cm−1) and anomalous Nernst conductivity (ANC, αyxA ∼2.1 A m−1 K−1) were obtained at room temperature (300 K). Theoretical analysis reveals that these prominent transport properties predominantly stem from the intrinsic Berry curvature (BC) mechanism. First-principles calculations further demonstrate substantial BC accumulation near the Fermi level EF, providing fundamental insights into the origin of enhanced AHC and ANC. These findings not only expand the material exploration landscape for large anomalous Hall and Nernst effects but also highlight ZrFe2 as a promising candidate for Hall-effect devices and thermoelectric applications, particularly due to its robust magnetic properties and topological features in the Kagomé lattice structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信