基于频率分解的自适应双流网络在低信噪比房颤分类中的应用

IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Jilin Wang , Tengqun Shen , Mengfan Li , Yijun Ma , Guozhen Sun , Yatao Zhang
{"title":"基于频率分解的自适应双流网络在低信噪比房颤分类中的应用","authors":"Jilin Wang ,&nbsp;Tengqun Shen ,&nbsp;Mengfan Li ,&nbsp;Yijun Ma ,&nbsp;Guozhen Sun ,&nbsp;Yatao Zhang","doi":"10.1016/j.medengphy.2025.104412","DOIUrl":null,"url":null,"abstract":"<div><div>To detect atrial fibrillation (AF) in ECG signals with low signal-to-noise ratio (SNR), this study introduces the adaptive bin-stream network (ABNet) based on frequency decomposition. The ABNet offers notable advantages: it exhibits high robustness in identifying AF amidst noisy environments, it decomposes the ECG signals into 32-frequency channel recordings to refine frequency ranges for better identifying AF, and it designs an adaptive bin-stream network to gain the optimal results. The method utilizes a 5-level Haar wavelet packet decomposition to decompose the preprocessed ECG signals into their corresponding 32-frequency channel recordings, and the preprocessing signals and the recordings are fed into waveform stream and frequency stream of the bin-stream network, respectively. Finally, an adaptive approach is employed to obtain the optimal classification results. The ABNet was validated for the PhysioNet/Computing in Cardiology Challenge 2017 database (CinC 2017 Db) to classify 4 categories i.e., normal sinus rhythm (N), AF, other abnormal rhythms (O) and noise (P), and it achieved accuracy (<em>acc</em>) 93.08 %, precision (<em>ppv</em>) 78.68 %, sensitivity (<em>sen</em>) 81.84 %, specificity (<em>spec</em>) 94.00 %, and <em>F</em><sub>1</sub> 0.8382. In addition, it achieved the <em>acc</em> 97.98, <em>ppv</em> 96.40, <em>sen</em> 98.37 %, <em>spec</em> 98.41 %, and <em>F</em><sub>1</sub> 0.9595 for a synthetic Db consisting of Shandong provincial hospital AF database (SPH AF Db) and CinC 2011 Db for classifying 3 categories i.e., N, AF and P. These results underscore the effectiveness of the ABNet in capturing detailed information about waveform and different frequencies in ECG signals.</div></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"145 ","pages":"Article 104412"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An adaptive bin-stream network based on frequency decomposition for classifying atrial fibrillation with low SNR data\",\"authors\":\"Jilin Wang ,&nbsp;Tengqun Shen ,&nbsp;Mengfan Li ,&nbsp;Yijun Ma ,&nbsp;Guozhen Sun ,&nbsp;Yatao Zhang\",\"doi\":\"10.1016/j.medengphy.2025.104412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To detect atrial fibrillation (AF) in ECG signals with low signal-to-noise ratio (SNR), this study introduces the adaptive bin-stream network (ABNet) based on frequency decomposition. The ABNet offers notable advantages: it exhibits high robustness in identifying AF amidst noisy environments, it decomposes the ECG signals into 32-frequency channel recordings to refine frequency ranges for better identifying AF, and it designs an adaptive bin-stream network to gain the optimal results. The method utilizes a 5-level Haar wavelet packet decomposition to decompose the preprocessed ECG signals into their corresponding 32-frequency channel recordings, and the preprocessing signals and the recordings are fed into waveform stream and frequency stream of the bin-stream network, respectively. Finally, an adaptive approach is employed to obtain the optimal classification results. The ABNet was validated for the PhysioNet/Computing in Cardiology Challenge 2017 database (CinC 2017 Db) to classify 4 categories i.e., normal sinus rhythm (N), AF, other abnormal rhythms (O) and noise (P), and it achieved accuracy (<em>acc</em>) 93.08 %, precision (<em>ppv</em>) 78.68 %, sensitivity (<em>sen</em>) 81.84 %, specificity (<em>spec</em>) 94.00 %, and <em>F</em><sub>1</sub> 0.8382. In addition, it achieved the <em>acc</em> 97.98, <em>ppv</em> 96.40, <em>sen</em> 98.37 %, <em>spec</em> 98.41 %, and <em>F</em><sub>1</sub> 0.9595 for a synthetic Db consisting of Shandong provincial hospital AF database (SPH AF Db) and CinC 2011 Db for classifying 3 categories i.e., N, AF and P. These results underscore the effectiveness of the ABNet in capturing detailed information about waveform and different frequencies in ECG signals.</div></div>\",\"PeriodicalId\":49836,\"journal\":{\"name\":\"Medical Engineering & Physics\",\"volume\":\"145 \",\"pages\":\"Article 104412\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Engineering & Physics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350453325001316\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453325001316","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了在低信噪比的心电信号中检测房颤,本研究引入了基于频率分解的自适应帧流网络(ABNet)。ABNet具有显著的优势:它在嘈杂环境中识别AF方面具有很高的鲁棒性,它将心电信号分解为32个频率通道记录以优化频率范围以更好地识别AF,并设计了自适应bin-stream网络以获得最佳结果。该方法利用5级Haar小波包分解将预处理后的心电信号分解为相应的32频通道记录,将预处理后的信号和记录分别送入bin-stream网络的波形流和频率流。最后,采用自适应方法获得最优分类结果。在PhysioNet/Computing in Cardiology Challenge 2017数据库(CinC 2017 Db)中对ABNet进行了验证,对正常窦性心律(N)、AF、其他异常心律(O)和噪声(P) 4类进行了分类,准确率(acc)为93.08%,精密度(ppv)为78.68%,灵敏度(sen)为81.84%,特异性(spec)为94.00%,F1为0.8382。此外,由山东省医院房颤数据库(SPH AF Db)和CinC 2011 Db组成的合成Db对N、AF和p 3个类别进行分类,其准确度为97.98,ppv为96.40,sen为98.37%,spec为98.41%,F1为0.9595,这些结果表明ABNet在捕获心电信号中波形和不同频率的详细信息方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An adaptive bin-stream network based on frequency decomposition for classifying atrial fibrillation with low SNR data
To detect atrial fibrillation (AF) in ECG signals with low signal-to-noise ratio (SNR), this study introduces the adaptive bin-stream network (ABNet) based on frequency decomposition. The ABNet offers notable advantages: it exhibits high robustness in identifying AF amidst noisy environments, it decomposes the ECG signals into 32-frequency channel recordings to refine frequency ranges for better identifying AF, and it designs an adaptive bin-stream network to gain the optimal results. The method utilizes a 5-level Haar wavelet packet decomposition to decompose the preprocessed ECG signals into their corresponding 32-frequency channel recordings, and the preprocessing signals and the recordings are fed into waveform stream and frequency stream of the bin-stream network, respectively. Finally, an adaptive approach is employed to obtain the optimal classification results. The ABNet was validated for the PhysioNet/Computing in Cardiology Challenge 2017 database (CinC 2017 Db) to classify 4 categories i.e., normal sinus rhythm (N), AF, other abnormal rhythms (O) and noise (P), and it achieved accuracy (acc) 93.08 %, precision (ppv) 78.68 %, sensitivity (sen) 81.84 %, specificity (spec) 94.00 %, and F1 0.8382. In addition, it achieved the acc 97.98, ppv 96.40, sen 98.37 %, spec 98.41 %, and F1 0.9595 for a synthetic Db consisting of Shandong provincial hospital AF database (SPH AF Db) and CinC 2011 Db for classifying 3 categories i.e., N, AF and P. These results underscore the effectiveness of the ABNet in capturing detailed information about waveform and different frequencies in ECG signals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical Engineering & Physics
Medical Engineering & Physics 工程技术-工程:生物医学
CiteScore
4.30
自引率
4.50%
发文量
172
审稿时长
3.0 months
期刊介绍: Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信