{"title":"Coxeter图中的同态","authors":"Marko Orel , Draženka Višnjić","doi":"10.1016/j.laa.2025.08.003","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> be the set of all <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> symmetric matrices with coefficients in the binary field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>, and let <span><math><mi>S</mi><mi>G</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> be its subset formed by invertible matrices. Let <span><math><msub><mrow><mover><mrow><mi>Γ</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub></math></span> be the graph with the vertex set <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> where a pair of vertices <span><math><mo>{</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>}</mo></math></span> form an edge if and only if <span><math><mrow><mi>rank</mi></mrow><mo>(</mo><mi>A</mi><mo>−</mo><mi>B</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span>. Similarly, let <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be the subgraph in <span><math><msub><mrow><mover><mrow><mi>Γ</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub></math></span>, which is induced by the set <span><math><mi>S</mi><mi>G</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. Graph <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> generalizes the well-known Coxeter graph, which is isomorphic to <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>. Motivated by research topics in coding theory, matrix theory, and graph theory, this paper represents the first step towards the characterization of all graph homomorphisms <span><math><mi>Φ</mi><mo>:</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>→</mo><msub><mrow><mover><mrow><mi>Γ</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>m</mi></mrow></msub></math></span> where <span><math><mi>n</mi><mo>,</mo><mi>m</mi></math></span> are positive integers. Here, the case <span><math><mi>n</mi><mo>=</mo><mn>3</mn></math></span> is solved.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"727 ","pages":"Pages 129-162"},"PeriodicalIF":1.1000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homomorphisms from the Coxeter graph\",\"authors\":\"Marko Orel , Draženka Višnjić\",\"doi\":\"10.1016/j.laa.2025.08.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> be the set of all <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> symmetric matrices with coefficients in the binary field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>, and let <span><math><mi>S</mi><mi>G</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> be its subset formed by invertible matrices. Let <span><math><msub><mrow><mover><mrow><mi>Γ</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub></math></span> be the graph with the vertex set <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> where a pair of vertices <span><math><mo>{</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>}</mo></math></span> form an edge if and only if <span><math><mrow><mi>rank</mi></mrow><mo>(</mo><mi>A</mi><mo>−</mo><mi>B</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span>. Similarly, let <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be the subgraph in <span><math><msub><mrow><mover><mrow><mi>Γ</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub></math></span>, which is induced by the set <span><math><mi>S</mi><mi>G</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. Graph <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> generalizes the well-known Coxeter graph, which is isomorphic to <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>. Motivated by research topics in coding theory, matrix theory, and graph theory, this paper represents the first step towards the characterization of all graph homomorphisms <span><math><mi>Φ</mi><mo>:</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>→</mo><msub><mrow><mover><mrow><mi>Γ</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>m</mi></mrow></msub></math></span> where <span><math><mi>n</mi><mo>,</mo><mi>m</mi></math></span> are positive integers. Here, the case <span><math><mi>n</mi><mo>=</mo><mn>3</mn></math></span> is solved.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"727 \",\"pages\":\"Pages 129-162\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525003398\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525003398","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let be the set of all symmetric matrices with coefficients in the binary field , and let be its subset formed by invertible matrices. Let be the graph with the vertex set where a pair of vertices form an edge if and only if . Similarly, let be the subgraph in , which is induced by the set . Graph generalizes the well-known Coxeter graph, which is isomorphic to . Motivated by research topics in coding theory, matrix theory, and graph theory, this paper represents the first step towards the characterization of all graph homomorphisms where are positive integers. Here, the case is solved.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.