Jakub Rogoża, Jakub Iwański, Katarzyna Ludwiczak, Bartosz Furtak, Aleksandra Krystyna Dąbrowska, Mateusz Tokarczyk, Johannes Binder, Andrzej Wysmołek
{"title":"半导体加工中外延大面积氮化硼脱层的缓解","authors":"Jakub Rogoża, Jakub Iwański, Katarzyna Ludwiczak, Bartosz Furtak, Aleksandra Krystyna Dąbrowska, Mateusz Tokarczyk, Johannes Binder, Andrzej Wysmołek","doi":"10.1016/j.tsf.2025.140770","DOIUrl":null,"url":null,"abstract":"<div><div>Hexagonal boron nitride (hBN) is a promising material for semiconductor and optoelectronic devices due to its wide bandgap and remarkable optical properties. To apply this material in the semiconductor industry, it is necessary to grow large-area layers on the wafer-scale. For this purpose, chemical vapor deposition methods are highly preferable. However, in the case of epitaxial BN, its fragility and susceptibility to delamination and fold formation during wet processing, such as lithography, present significant challenges to its integration into device fabrication. In this work, we introduce a controlled delamination and transfer method that effectively prevents the layer from degradation, allowing for multi-step lithographic processes. This approach is applicable to BN layers across a broad thickness range, from tens to hundreds of nanometers, and ensures compatibility with standard photolithographic techniques without compromising the material’s intrinsic properties. By addressing key processing challenges, this method paves the way for integrating epitaxial BN into advanced semiconductor and optoelectronic technologies.</div></div>","PeriodicalId":23182,"journal":{"name":"Thin Solid Films","volume":"826 ","pages":"Article 140770"},"PeriodicalIF":2.0000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitigation of delamination of epitaxial large-area boron nitride for semiconductor processing\",\"authors\":\"Jakub Rogoża, Jakub Iwański, Katarzyna Ludwiczak, Bartosz Furtak, Aleksandra Krystyna Dąbrowska, Mateusz Tokarczyk, Johannes Binder, Andrzej Wysmołek\",\"doi\":\"10.1016/j.tsf.2025.140770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hexagonal boron nitride (hBN) is a promising material for semiconductor and optoelectronic devices due to its wide bandgap and remarkable optical properties. To apply this material in the semiconductor industry, it is necessary to grow large-area layers on the wafer-scale. For this purpose, chemical vapor deposition methods are highly preferable. However, in the case of epitaxial BN, its fragility and susceptibility to delamination and fold formation during wet processing, such as lithography, present significant challenges to its integration into device fabrication. In this work, we introduce a controlled delamination and transfer method that effectively prevents the layer from degradation, allowing for multi-step lithographic processes. This approach is applicable to BN layers across a broad thickness range, from tens to hundreds of nanometers, and ensures compatibility with standard photolithographic techniques without compromising the material’s intrinsic properties. By addressing key processing challenges, this method paves the way for integrating epitaxial BN into advanced semiconductor and optoelectronic technologies.</div></div>\",\"PeriodicalId\":23182,\"journal\":{\"name\":\"Thin Solid Films\",\"volume\":\"826 \",\"pages\":\"Article 140770\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thin Solid Films\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040609025001695\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin Solid Films","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040609025001695","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Mitigation of delamination of epitaxial large-area boron nitride for semiconductor processing
Hexagonal boron nitride (hBN) is a promising material for semiconductor and optoelectronic devices due to its wide bandgap and remarkable optical properties. To apply this material in the semiconductor industry, it is necessary to grow large-area layers on the wafer-scale. For this purpose, chemical vapor deposition methods are highly preferable. However, in the case of epitaxial BN, its fragility and susceptibility to delamination and fold formation during wet processing, such as lithography, present significant challenges to its integration into device fabrication. In this work, we introduce a controlled delamination and transfer method that effectively prevents the layer from degradation, allowing for multi-step lithographic processes. This approach is applicable to BN layers across a broad thickness range, from tens to hundreds of nanometers, and ensures compatibility with standard photolithographic techniques without compromising the material’s intrinsic properties. By addressing key processing challenges, this method paves the way for integrating epitaxial BN into advanced semiconductor and optoelectronic technologies.
期刊介绍:
Thin Solid Films is an international journal which serves scientists and engineers working in the fields of thin-film synthesis, characterization, and applications. The field of thin films, which can be defined as the confluence of materials science, surface science, and applied physics, has become an identifiable unified discipline of scientific endeavor.