Virna Margarita Martín Giménez, Sebastián García Menéndez, Walter Manucha
{"title":"内源性纳米制剂内源性大麻素和顽固性高血压关键信号通路的激素调节。","authors":"Virna Margarita Martín Giménez, Sebastián García Menéndez, Walter Manucha","doi":"10.2174/0113816128396666250728074858","DOIUrl":null,"url":null,"abstract":"<p><p>Despite notable advances in the development of synthetic antihypertensive therapies, resistant hypertension remains a complex and challenging condition. Its persistence is attributed to multifactorial resistance mechanisms involving several key signaling pathways, including Hsp70, WT1, AT1, and iNOS. A promising therapeutic strategy involves the simultaneous modulation of these pathways using endogenous bioactive compounds delivered via controlled and sustained-release nanosystems. Such nanoformulations enable the co-delivery of multiple agents, enhancing their bioavailability, stability, and therapeutic precision. This multifaceted approach allows for more effective modulation of the underlying pathophysiological processes of hypertension, including inflammation, oxidative stress, and vascular dysfunction. By integrating these compounds into a single delivery platform, nanoformulations may offer a significant advancement in the treatment of resistant hypertension and related cardiovascular disorders. Future research should prioritize the optimization of these delivery systems and the assessment of their efficacy in clinically relevant models.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Endogenous Nanoformulation for Endocannabinoid and Hormonal Modulation of Key Signaling Pathways in Resistant Hypertension.\",\"authors\":\"Virna Margarita Martín Giménez, Sebastián García Menéndez, Walter Manucha\",\"doi\":\"10.2174/0113816128396666250728074858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite notable advances in the development of synthetic antihypertensive therapies, resistant hypertension remains a complex and challenging condition. Its persistence is attributed to multifactorial resistance mechanisms involving several key signaling pathways, including Hsp70, WT1, AT1, and iNOS. A promising therapeutic strategy involves the simultaneous modulation of these pathways using endogenous bioactive compounds delivered via controlled and sustained-release nanosystems. Such nanoformulations enable the co-delivery of multiple agents, enhancing their bioavailability, stability, and therapeutic precision. This multifaceted approach allows for more effective modulation of the underlying pathophysiological processes of hypertension, including inflammation, oxidative stress, and vascular dysfunction. By integrating these compounds into a single delivery platform, nanoformulations may offer a significant advancement in the treatment of resistant hypertension and related cardiovascular disorders. Future research should prioritize the optimization of these delivery systems and the assessment of their efficacy in clinically relevant models.</p>\",\"PeriodicalId\":10845,\"journal\":{\"name\":\"Current pharmaceutical design\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current pharmaceutical design\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113816128396666250728074858\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113816128396666250728074858","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Multi-Endogenous Nanoformulation for Endocannabinoid and Hormonal Modulation of Key Signaling Pathways in Resistant Hypertension.
Despite notable advances in the development of synthetic antihypertensive therapies, resistant hypertension remains a complex and challenging condition. Its persistence is attributed to multifactorial resistance mechanisms involving several key signaling pathways, including Hsp70, WT1, AT1, and iNOS. A promising therapeutic strategy involves the simultaneous modulation of these pathways using endogenous bioactive compounds delivered via controlled and sustained-release nanosystems. Such nanoformulations enable the co-delivery of multiple agents, enhancing their bioavailability, stability, and therapeutic precision. This multifaceted approach allows for more effective modulation of the underlying pathophysiological processes of hypertension, including inflammation, oxidative stress, and vascular dysfunction. By integrating these compounds into a single delivery platform, nanoformulations may offer a significant advancement in the treatment of resistant hypertension and related cardiovascular disorders. Future research should prioritize the optimization of these delivery systems and the assessment of their efficacy in clinically relevant models.
期刊介绍:
Current Pharmaceutical Design publishes timely in-depth reviews and research articles from leading pharmaceutical researchers in the field, covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area guest edited by an acknowledged authority in the field.
Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design including: medicinal chemistry, pharmacology, drug targets and disease mechanism.