{"title":"二氧化硅环在TSV结构中的创新:三维芯片应用的热机械和信号完整性分析","authors":"Kaihong Hou;Zhengwei Fan;Yonggui Chen;Shufeng Zhang;Yashun Wang;Xun Chen","doi":"10.1109/JEDS.2025.3592893","DOIUrl":null,"url":null,"abstract":"Through-silicon via (TSV) as a crucial interconnection microstructure in three-dimensional (3D) chip, have significantly enhanced device performance and reliability. However, the increasing interconnect density and operating frequency now pose substantial threats to TSVs’ thermal-mechanical and signal transmission reliability, leading to a reduction in the overall reliability of 3D chip. In this study, a novel TSV with silicon dioxide ring (SDR) structure is proposed, its anti-current leakage performance and transmission performance are proved to be superior than traditional TSV and their derivative. On the basis, the equivalent circuit model of the proposed TSV is established, and the influence of the location, height and thickness of SDR on the thermal-mechanical performance and signal integrity of the new TSV is deeply investigated through thermomechanical analysis, electromagnetic analysis and field-circuit collaborative analysis. Results show that SDR’s position, thickness, and height mainly affect TSV’s thermal stress distribution by changing the area enclosed by the SDR and the volume of the SDR itself, transverse thermal conductivity, and the heat storage capacity. A moderate increase in the distance between SDR and the Cu column can enhance insertion loss in direct current (DC) condition. The inner diameter, thickness and height of SDR have different influence mechanisms on the integrity of TSV. These findings provide valuable guidance for TSV optimization and reliability analysis.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"13 ","pages":"937-946"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11098466","citationCount":"0","resultStr":"{\"title\":\"Silicon Dioxide Ring Innovations in TSV Structures: Analysis of Thermal-Mechanical and Signal Integrity for 3-D Chip Applications\",\"authors\":\"Kaihong Hou;Zhengwei Fan;Yonggui Chen;Shufeng Zhang;Yashun Wang;Xun Chen\",\"doi\":\"10.1109/JEDS.2025.3592893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Through-silicon via (TSV) as a crucial interconnection microstructure in three-dimensional (3D) chip, have significantly enhanced device performance and reliability. However, the increasing interconnect density and operating frequency now pose substantial threats to TSVs’ thermal-mechanical and signal transmission reliability, leading to a reduction in the overall reliability of 3D chip. In this study, a novel TSV with silicon dioxide ring (SDR) structure is proposed, its anti-current leakage performance and transmission performance are proved to be superior than traditional TSV and their derivative. On the basis, the equivalent circuit model of the proposed TSV is established, and the influence of the location, height and thickness of SDR on the thermal-mechanical performance and signal integrity of the new TSV is deeply investigated through thermomechanical analysis, electromagnetic analysis and field-circuit collaborative analysis. Results show that SDR’s position, thickness, and height mainly affect TSV’s thermal stress distribution by changing the area enclosed by the SDR and the volume of the SDR itself, transverse thermal conductivity, and the heat storage capacity. A moderate increase in the distance between SDR and the Cu column can enhance insertion loss in direct current (DC) condition. The inner diameter, thickness and height of SDR have different influence mechanisms on the integrity of TSV. These findings provide valuable guidance for TSV optimization and reliability analysis.\",\"PeriodicalId\":13210,\"journal\":{\"name\":\"IEEE Journal of the Electron Devices Society\",\"volume\":\"13 \",\"pages\":\"937-946\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11098466\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of the Electron Devices Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11098466/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11098466/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Silicon Dioxide Ring Innovations in TSV Structures: Analysis of Thermal-Mechanical and Signal Integrity for 3-D Chip Applications
Through-silicon via (TSV) as a crucial interconnection microstructure in three-dimensional (3D) chip, have significantly enhanced device performance and reliability. However, the increasing interconnect density and operating frequency now pose substantial threats to TSVs’ thermal-mechanical and signal transmission reliability, leading to a reduction in the overall reliability of 3D chip. In this study, a novel TSV with silicon dioxide ring (SDR) structure is proposed, its anti-current leakage performance and transmission performance are proved to be superior than traditional TSV and their derivative. On the basis, the equivalent circuit model of the proposed TSV is established, and the influence of the location, height and thickness of SDR on the thermal-mechanical performance and signal integrity of the new TSV is deeply investigated through thermomechanical analysis, electromagnetic analysis and field-circuit collaborative analysis. Results show that SDR’s position, thickness, and height mainly affect TSV’s thermal stress distribution by changing the area enclosed by the SDR and the volume of the SDR itself, transverse thermal conductivity, and the heat storage capacity. A moderate increase in the distance between SDR and the Cu column can enhance insertion loss in direct current (DC) condition. The inner diameter, thickness and height of SDR have different influence mechanisms on the integrity of TSV. These findings provide valuable guidance for TSV optimization and reliability analysis.
期刊介绍:
The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.