基于CaCuP的热电器件中费米能级和加权迁移率同步工程的多路组合调谐

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Melis Akturk Aktas, Minsu Heo, Se Yun Kim, Saba Sepahban Shahgoli, Tugser Yilmaz, Hyun‐Sik Kim, Umut Aydemir
{"title":"基于CaCuP的热电器件中费米能级和加权迁移率同步工程的多路组合调谐","authors":"Melis Akturk Aktas, Minsu Heo, Se Yun Kim, Saba Sepahban Shahgoli, Tugser Yilmaz, Hyun‐Sik Kim, Umut Aydemir","doi":"10.1002/aelm.202500303","DOIUrl":null,"url":null,"abstract":"Ternary metal phosphides emerge as promising thermoelectric materials due to their earth‐abundant constituents and inherently complex crystal structures, which favor low lattice thermal conductivity (<jats:italic>κ</jats:italic><jats:sub>lat</jats:sub>). Here, three routes (slight Ca excess, Zn<jats:sup>2+</jats:sup>, and La<jats:sup>3+</jats:sup> substitution) are investigated to span a broad carrier concentration range, combined with a single parabolic band (SPB) model, confirming that each route shifts Fermi level (<jats:italic>E</jats:italic><jats:sub>f</jats:sub>) toward the theoretical optimum. Ca<jats:sub>1.05</jats:sub>CuP maintains its weighted mobility (<jats:italic>µ</jats:italic><jats:sub>W</jats:sub>), delivering the highest power factor (≈1.83 mW·m<jats:sup>−1</jats:sup>·K<jats:sup>−2</jats:sup>) and a <jats:italic>zT</jats:italic> of ≈0.45 at 823 K. By contrast, Zn‐ or La‐substituted samples experienced modest <jats:italic>µ</jats:italic><jats:sub>W</jats:sub> reductions yet demonstrate that <jats:italic>E</jats:italic><jats:sub>f</jats:sub> can be tuned almost continuously by stoichiometric engineering. Collectively, these results establish host‐cation stoichiometry control as a pathway for continuous <jats:italic>E</jats:italic><jats:sub>f</jats:sub> engineering and provide practical guidelines for designing phosphide thermoelectrics.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"27 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous Fermi Level and Weighted Mobility Engineering in CaCuP‐Based Thermoelectrics via Multi‐Route Compositional Tuning\",\"authors\":\"Melis Akturk Aktas, Minsu Heo, Se Yun Kim, Saba Sepahban Shahgoli, Tugser Yilmaz, Hyun‐Sik Kim, Umut Aydemir\",\"doi\":\"10.1002/aelm.202500303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ternary metal phosphides emerge as promising thermoelectric materials due to their earth‐abundant constituents and inherently complex crystal structures, which favor low lattice thermal conductivity (<jats:italic>κ</jats:italic><jats:sub>lat</jats:sub>). Here, three routes (slight Ca excess, Zn<jats:sup>2+</jats:sup>, and La<jats:sup>3+</jats:sup> substitution) are investigated to span a broad carrier concentration range, combined with a single parabolic band (SPB) model, confirming that each route shifts Fermi level (<jats:italic>E</jats:italic><jats:sub>f</jats:sub>) toward the theoretical optimum. Ca<jats:sub>1.05</jats:sub>CuP maintains its weighted mobility (<jats:italic>µ</jats:italic><jats:sub>W</jats:sub>), delivering the highest power factor (≈1.83 mW·m<jats:sup>−1</jats:sup>·K<jats:sup>−2</jats:sup>) and a <jats:italic>zT</jats:italic> of ≈0.45 at 823 K. By contrast, Zn‐ or La‐substituted samples experienced modest <jats:italic>µ</jats:italic><jats:sub>W</jats:sub> reductions yet demonstrate that <jats:italic>E</jats:italic><jats:sub>f</jats:sub> can be tuned almost continuously by stoichiometric engineering. Collectively, these results establish host‐cation stoichiometry control as a pathway for continuous <jats:italic>E</jats:italic><jats:sub>f</jats:sub> engineering and provide practical guidelines for designing phosphide thermoelectrics.\",\"PeriodicalId\":110,\"journal\":{\"name\":\"Advanced Electronic Materials\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aelm.202500303\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202500303","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

三元金属磷化物由于其丰富的稀土成分和固有的复杂晶体结构,有利于低晶格热导率(κlat)而成为有前途的热电材料。本文研究了三种途径(轻微Ca过量、Zn2+和La3+取代),并结合单一抛物带(SPB)模型,在较宽的载流子浓度范围内,证实了每种途径都将费米能级(Ef)移向理论最佳。Ca1.05CuP保持其加权迁移率(µW),在823 K时提供最高的功率因数(≈1.83 mW·m−1·K−2)和≈0.45的zT。相比之下,Zn -或La -取代的样品经历了适度的μ W降低,但表明Ef可以通过化学计量工程几乎连续地调谐。总的来说,这些结果建立了宿主阳离子化学计量控制作为连续Ef工程的途径,并为设计磷化物热电提供了实用指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simultaneous Fermi Level and Weighted Mobility Engineering in CaCuP‐Based Thermoelectrics via Multi‐Route Compositional Tuning
Ternary metal phosphides emerge as promising thermoelectric materials due to their earth‐abundant constituents and inherently complex crystal structures, which favor low lattice thermal conductivity (κlat). Here, three routes (slight Ca excess, Zn2+, and La3+ substitution) are investigated to span a broad carrier concentration range, combined with a single parabolic band (SPB) model, confirming that each route shifts Fermi level (Ef) toward the theoretical optimum. Ca1.05CuP maintains its weighted mobility (µW), delivering the highest power factor (≈1.83 mW·m−1·K−2) and a zT of ≈0.45 at 823 K. By contrast, Zn‐ or La‐substituted samples experienced modest µW reductions yet demonstrate that Ef can be tuned almost continuously by stoichiometric engineering. Collectively, these results establish host‐cation stoichiometry control as a pathway for continuous Ef engineering and provide practical guidelines for designing phosphide thermoelectrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信