Melis Akturk Aktas, Minsu Heo, Se Yun Kim, Saba Sepahban Shahgoli, Tugser Yilmaz, Hyun‐Sik Kim, Umut Aydemir
{"title":"基于CaCuP的热电器件中费米能级和加权迁移率同步工程的多路组合调谐","authors":"Melis Akturk Aktas, Minsu Heo, Se Yun Kim, Saba Sepahban Shahgoli, Tugser Yilmaz, Hyun‐Sik Kim, Umut Aydemir","doi":"10.1002/aelm.202500303","DOIUrl":null,"url":null,"abstract":"Ternary metal phosphides emerge as promising thermoelectric materials due to their earth‐abundant constituents and inherently complex crystal structures, which favor low lattice thermal conductivity (<jats:italic>κ</jats:italic><jats:sub>lat</jats:sub>). Here, three routes (slight Ca excess, Zn<jats:sup>2+</jats:sup>, and La<jats:sup>3+</jats:sup> substitution) are investigated to span a broad carrier concentration range, combined with a single parabolic band (SPB) model, confirming that each route shifts Fermi level (<jats:italic>E</jats:italic><jats:sub>f</jats:sub>) toward the theoretical optimum. Ca<jats:sub>1.05</jats:sub>CuP maintains its weighted mobility (<jats:italic>µ</jats:italic><jats:sub>W</jats:sub>), delivering the highest power factor (≈1.83 mW·m<jats:sup>−1</jats:sup>·K<jats:sup>−2</jats:sup>) and a <jats:italic>zT</jats:italic> of ≈0.45 at 823 K. By contrast, Zn‐ or La‐substituted samples experienced modest <jats:italic>µ</jats:italic><jats:sub>W</jats:sub> reductions yet demonstrate that <jats:italic>E</jats:italic><jats:sub>f</jats:sub> can be tuned almost continuously by stoichiometric engineering. Collectively, these results establish host‐cation stoichiometry control as a pathway for continuous <jats:italic>E</jats:italic><jats:sub>f</jats:sub> engineering and provide practical guidelines for designing phosphide thermoelectrics.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"27 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous Fermi Level and Weighted Mobility Engineering in CaCuP‐Based Thermoelectrics via Multi‐Route Compositional Tuning\",\"authors\":\"Melis Akturk Aktas, Minsu Heo, Se Yun Kim, Saba Sepahban Shahgoli, Tugser Yilmaz, Hyun‐Sik Kim, Umut Aydemir\",\"doi\":\"10.1002/aelm.202500303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ternary metal phosphides emerge as promising thermoelectric materials due to their earth‐abundant constituents and inherently complex crystal structures, which favor low lattice thermal conductivity (<jats:italic>κ</jats:italic><jats:sub>lat</jats:sub>). Here, three routes (slight Ca excess, Zn<jats:sup>2+</jats:sup>, and La<jats:sup>3+</jats:sup> substitution) are investigated to span a broad carrier concentration range, combined with a single parabolic band (SPB) model, confirming that each route shifts Fermi level (<jats:italic>E</jats:italic><jats:sub>f</jats:sub>) toward the theoretical optimum. Ca<jats:sub>1.05</jats:sub>CuP maintains its weighted mobility (<jats:italic>µ</jats:italic><jats:sub>W</jats:sub>), delivering the highest power factor (≈1.83 mW·m<jats:sup>−1</jats:sup>·K<jats:sup>−2</jats:sup>) and a <jats:italic>zT</jats:italic> of ≈0.45 at 823 K. By contrast, Zn‐ or La‐substituted samples experienced modest <jats:italic>µ</jats:italic><jats:sub>W</jats:sub> reductions yet demonstrate that <jats:italic>E</jats:italic><jats:sub>f</jats:sub> can be tuned almost continuously by stoichiometric engineering. Collectively, these results establish host‐cation stoichiometry control as a pathway for continuous <jats:italic>E</jats:italic><jats:sub>f</jats:sub> engineering and provide practical guidelines for designing phosphide thermoelectrics.\",\"PeriodicalId\":110,\"journal\":{\"name\":\"Advanced Electronic Materials\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aelm.202500303\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202500303","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Simultaneous Fermi Level and Weighted Mobility Engineering in CaCuP‐Based Thermoelectrics via Multi‐Route Compositional Tuning
Ternary metal phosphides emerge as promising thermoelectric materials due to their earth‐abundant constituents and inherently complex crystal structures, which favor low lattice thermal conductivity (κlat). Here, three routes (slight Ca excess, Zn2+, and La3+ substitution) are investigated to span a broad carrier concentration range, combined with a single parabolic band (SPB) model, confirming that each route shifts Fermi level (Ef) toward the theoretical optimum. Ca1.05CuP maintains its weighted mobility (µW), delivering the highest power factor (≈1.83 mW·m−1·K−2) and a zT of ≈0.45 at 823 K. By contrast, Zn‐ or La‐substituted samples experienced modest µW reductions yet demonstrate that Ef can be tuned almost continuously by stoichiometric engineering. Collectively, these results establish host‐cation stoichiometry control as a pathway for continuous Ef engineering and provide practical guidelines for designing phosphide thermoelectrics.
期刊介绍:
Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.