硅橡胶和碳基弹性体通过化学和拓扑粘附的耐变形连接

IF 5.1 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Daohang Cai and Yanhao Yu
{"title":"硅橡胶和碳基弹性体通过化学和拓扑粘附的耐变形连接","authors":"Daohang Cai and Yanhao Yu","doi":"10.1039/D5TC02022K","DOIUrl":null,"url":null,"abstract":"<p >Integrating silicone rubbers with carbon-based elastomers is a common practice in assembling stretchable electronics, but weak or rigid interfacial linkages often lead to structural failure under deformation. Here, we present a chemical and topological adhesive (CTA) composed of poly(styrene–isobutylene–styrene) (SIBS) and maleic anhydride-grafted polypropylene (PP-<em>g</em>-MAH) to bridge silicone rubbers and carbon-based elastomers. The CTA synergizes covalent bonding (<em>via</em> amine-anhydride reactions) with topological entanglement (enabled by matched chain reptation) and achieves interfacial toughness &gt;200 J m<small><sup>−2</sup></small> through finger-pressing which can be further increased to &gt;600 J m<small><sup>−2</sup></small><em>via</em> hot pressing. The adhered interface can endure 10 000 cycles of 100% stretch and 10 days of exposure to acidic/alkaline solutions (pH 1–13). The CTA applies to various silicone rubbers (<em>e.g.</em>, polydimethylsiloxane (PDMS) and Ecoflex silicone elastomer) and carbon-based elastomers (<em>e.g.</em>, poly(styrene–ethylene–butylene–styrene) (SEBS), poly(styrene–isobutylene–styrene) (SIBS), and poly(styrene–butylene–styrene) (SBS)). This adhesion strategy significantly increases the interfacial toughness of stretchable devices in practical usage, offering a general solution for deformation-tolerant integration of stretchable electronics.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 32","pages":" 16787-16795"},"PeriodicalIF":5.1000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deformation-tolerant linkage of silicone rubbers and carbon-based elastomers via chemical and topological adhesion†\",\"authors\":\"Daohang Cai and Yanhao Yu\",\"doi\":\"10.1039/D5TC02022K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Integrating silicone rubbers with carbon-based elastomers is a common practice in assembling stretchable electronics, but weak or rigid interfacial linkages often lead to structural failure under deformation. Here, we present a chemical and topological adhesive (CTA) composed of poly(styrene–isobutylene–styrene) (SIBS) and maleic anhydride-grafted polypropylene (PP-<em>g</em>-MAH) to bridge silicone rubbers and carbon-based elastomers. The CTA synergizes covalent bonding (<em>via</em> amine-anhydride reactions) with topological entanglement (enabled by matched chain reptation) and achieves interfacial toughness &gt;200 J m<small><sup>−2</sup></small> through finger-pressing which can be further increased to &gt;600 J m<small><sup>−2</sup></small><em>via</em> hot pressing. The adhered interface can endure 10 000 cycles of 100% stretch and 10 days of exposure to acidic/alkaline solutions (pH 1–13). The CTA applies to various silicone rubbers (<em>e.g.</em>, polydimethylsiloxane (PDMS) and Ecoflex silicone elastomer) and carbon-based elastomers (<em>e.g.</em>, poly(styrene–ethylene–butylene–styrene) (SEBS), poly(styrene–isobutylene–styrene) (SIBS), and poly(styrene–butylene–styrene) (SBS)). This adhesion strategy significantly increases the interfacial toughness of stretchable devices in practical usage, offering a general solution for deformation-tolerant integration of stretchable electronics.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":\" 32\",\"pages\":\" 16787-16795\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc02022k\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc02022k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

将硅橡胶与碳基弹性体集成在一起是组装可拉伸电子产品的常见做法,但弱或刚性的界面连接经常导致变形下的结构破坏。在这里,我们提出了一种由聚苯乙烯-异丁烯-苯乙烯(SIBS)和马来酸酐接枝聚丙烯(PP-g-MAH)组成的化学和拓扑粘合剂(CTA)来桥接硅橡胶和碳基弹性体。CTA使共价键(通过胺酸酐反应)与拓扑缠结(通过匹配链重复实现)协同作用,通过指压可获得200 J m−2的界面韧性,通过热压可进一步提高到600 J m−2。粘附的界面可以承受10万次100%拉伸循环和10天的酸性/碱性溶液(pH 1-13)。CTA适用于各种硅橡胶(如聚二甲基硅氧烷(PDMS)和Ecoflex有机硅弹性体)和碳基弹性体(如聚苯乙烯-乙烯-丁烯-苯乙烯)(SEBS)、聚苯乙烯-异丁烯-苯乙烯)(SIBS)和聚苯乙烯-丁烯-苯乙烯)(SBS))。这种粘附策略在实际使用中显著提高了可拉伸器件的界面韧性,为可拉伸电子器件的耐变形集成提供了通用解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deformation-tolerant linkage of silicone rubbers and carbon-based elastomers via chemical and topological adhesion†

Deformation-tolerant linkage of silicone rubbers and carbon-based elastomers via chemical and topological adhesion†

Integrating silicone rubbers with carbon-based elastomers is a common practice in assembling stretchable electronics, but weak or rigid interfacial linkages often lead to structural failure under deformation. Here, we present a chemical and topological adhesive (CTA) composed of poly(styrene–isobutylene–styrene) (SIBS) and maleic anhydride-grafted polypropylene (PP-g-MAH) to bridge silicone rubbers and carbon-based elastomers. The CTA synergizes covalent bonding (via amine-anhydride reactions) with topological entanglement (enabled by matched chain reptation) and achieves interfacial toughness >200 J m−2 through finger-pressing which can be further increased to >600 J m−2via hot pressing. The adhered interface can endure 10 000 cycles of 100% stretch and 10 days of exposure to acidic/alkaline solutions (pH 1–13). The CTA applies to various silicone rubbers (e.g., polydimethylsiloxane (PDMS) and Ecoflex silicone elastomer) and carbon-based elastomers (e.g., poly(styrene–ethylene–butylene–styrene) (SEBS), poly(styrene–isobutylene–styrene) (SIBS), and poly(styrene–butylene–styrene) (SBS)). This adhesion strategy significantly increases the interfacial toughness of stretchable devices in practical usage, offering a general solution for deformation-tolerant integration of stretchable electronics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信