基于人工神经网络的大鼠24小时脑电图峰波活动谱图分类:峰波放电人工神经网络(SWAN)

IF 2.3 4区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Ivan Lazarenko, Evgenia Sitnikova
{"title":"基于人工神经网络的大鼠24小时脑电图峰波活动谱图分类:峰波放电人工神经网络(SWAN)","authors":"Ivan Lazarenko,&nbsp;Evgenia Sitnikova","doi":"10.1016/j.jneumeth.2025.110555","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Electroencephalographic (EEG) detection of spike-wave discharges (SWDs) is essential for diagnosing absence epilepsy. Automated tools for long-term wearable EEG are needed, but current methods relying on basic signal variability metrics inadequately capture SWD complexity.</div></div><div><h3>New method</h3><div>We developed the Spike-Wave discharge Artificial Neural Network (SWAN), a shallow ANN classifier analyzing STFT spectrograms. SWAN addresses two critical dimensions of absence epilepsy: 1) spontaneous SWDs in WAG/Rij rats, and 2) drug-induced SWD transformations mediated by alpha2-adrenoreceptor agonists (xylazine, dexmedetomidine).</div></div><div><h3>Results</h3><div>Trained on baseline EEG from 3 rats and tested on baseline/pharmacological recordings from 4 rats, SWAN achieved high precision (0.96) and sensitivity (0.79) across both conditions. It incorporates a novel \"certainty\" metric quantifying detection confidence.</div></div><div><h3>Comparison with existing methods</h3><div>SWAN surpasses amplitude-based variability measures (e.g., standard deviation) by directly evaluating complex spatiotemporal SWD patterns in spectrograms, enabling more reliable detection. Its shallow architecture facilitates mathematical interrogation of SWD features.</div></div><div><h3>Conclusions</h3><div>SWAN accurately identifies both spontaneous and pharmacologically transformed SWDs in a validated rat model. High precision minimizes over-diagnosis in prolonged recordings, while automation supports unattended monitoring via wearable devices. Future work requires expanded datasets to optimize sensitivity under pharmacological challenge. SWAN provides a robust tool for epilepsy research and therapeutic assessment.</div></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"423 ","pages":"Article 110555"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel ANN-based classification of spike-wave activity in 24-hour EEG recordings in rats using spectrograms: Spike-Wave Discharge Artificial Neural Network (SWAN)\",\"authors\":\"Ivan Lazarenko,&nbsp;Evgenia Sitnikova\",\"doi\":\"10.1016/j.jneumeth.2025.110555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Electroencephalographic (EEG) detection of spike-wave discharges (SWDs) is essential for diagnosing absence epilepsy. Automated tools for long-term wearable EEG are needed, but current methods relying on basic signal variability metrics inadequately capture SWD complexity.</div></div><div><h3>New method</h3><div>We developed the Spike-Wave discharge Artificial Neural Network (SWAN), a shallow ANN classifier analyzing STFT spectrograms. SWAN addresses two critical dimensions of absence epilepsy: 1) spontaneous SWDs in WAG/Rij rats, and 2) drug-induced SWD transformations mediated by alpha2-adrenoreceptor agonists (xylazine, dexmedetomidine).</div></div><div><h3>Results</h3><div>Trained on baseline EEG from 3 rats and tested on baseline/pharmacological recordings from 4 rats, SWAN achieved high precision (0.96) and sensitivity (0.79) across both conditions. It incorporates a novel \\\"certainty\\\" metric quantifying detection confidence.</div></div><div><h3>Comparison with existing methods</h3><div>SWAN surpasses amplitude-based variability measures (e.g., standard deviation) by directly evaluating complex spatiotemporal SWD patterns in spectrograms, enabling more reliable detection. Its shallow architecture facilitates mathematical interrogation of SWD features.</div></div><div><h3>Conclusions</h3><div>SWAN accurately identifies both spontaneous and pharmacologically transformed SWDs in a validated rat model. High precision minimizes over-diagnosis in prolonged recordings, while automation supports unattended monitoring via wearable devices. Future work requires expanded datasets to optimize sensitivity under pharmacological challenge. SWAN provides a robust tool for epilepsy research and therapeutic assessment.</div></div>\",\"PeriodicalId\":16415,\"journal\":{\"name\":\"Journal of Neuroscience Methods\",\"volume\":\"423 \",\"pages\":\"Article 110555\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroscience Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165027025001992\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165027025001992","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

背景:脑电图(EEG)检测的尖波放电(SWDs)是必不可少的诊断缺失癫痫。需要用于长期可穿戴脑电图的自动化工具,但目前依赖于基本信号变异性指标的方法无法充分捕捉SWD的复杂性。我们开发了尖波放电人工神经网络(SWAN),这是一种分析STFT谱图的浅层神经网络分类器。SWAN研究了缺失癫痫的两个关键维度:1)WAG/Rij大鼠自发性SWD,以及2)由α - 2肾上腺素受体激动剂(xylazine,右美托咪定)介导的药物诱导的SWD转化。结果对3只大鼠的基线脑电图和4只大鼠的基线/药理记录进行了测试,SWAN在两种情况下均获得了较高的精度(0.96)和灵敏度(0.79)。它采用了一种新的“确定性”度量来量化检测置信度。与现有方法相比,swan通过直接评估谱图中复杂的时空SWD模式,超越了基于幅度的变异性测量(如标准差),实现了更可靠的检测。它的浅结构便于对SWD特征进行数学分析。结论swan能准确识别大鼠自发性和药理学转化的SWDs。高精度最大限度地减少了长时间录音中的过度诊断,而自动化支持通过可穿戴设备进行无人值守监控。未来的工作需要扩展数据集来优化药理学挑战下的敏感性。SWAN为癫痫研究和治疗评估提供了一个强大的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel ANN-based classification of spike-wave activity in 24-hour EEG recordings in rats using spectrograms: Spike-Wave Discharge Artificial Neural Network (SWAN)

Background

Electroencephalographic (EEG) detection of spike-wave discharges (SWDs) is essential for diagnosing absence epilepsy. Automated tools for long-term wearable EEG are needed, but current methods relying on basic signal variability metrics inadequately capture SWD complexity.

New method

We developed the Spike-Wave discharge Artificial Neural Network (SWAN), a shallow ANN classifier analyzing STFT spectrograms. SWAN addresses two critical dimensions of absence epilepsy: 1) spontaneous SWDs in WAG/Rij rats, and 2) drug-induced SWD transformations mediated by alpha2-adrenoreceptor agonists (xylazine, dexmedetomidine).

Results

Trained on baseline EEG from 3 rats and tested on baseline/pharmacological recordings from 4 rats, SWAN achieved high precision (0.96) and sensitivity (0.79) across both conditions. It incorporates a novel "certainty" metric quantifying detection confidence.

Comparison with existing methods

SWAN surpasses amplitude-based variability measures (e.g., standard deviation) by directly evaluating complex spatiotemporal SWD patterns in spectrograms, enabling more reliable detection. Its shallow architecture facilitates mathematical interrogation of SWD features.

Conclusions

SWAN accurately identifies both spontaneous and pharmacologically transformed SWDs in a validated rat model. High precision minimizes over-diagnosis in prolonged recordings, while automation supports unattended monitoring via wearable devices. Future work requires expanded datasets to optimize sensitivity under pharmacological challenge. SWAN provides a robust tool for epilepsy research and therapeutic assessment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Neuroscience Methods
Journal of Neuroscience Methods 医学-神经科学
CiteScore
7.10
自引率
3.30%
发文量
226
审稿时长
52 days
期刊介绍: The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信