Jianjiu Chen , Geoffrey Ho Duen Leung , Howell Leung , Alina Ustiugova , Anastasia Shneyderman , Mike Korzinkin , David Gennert , Frank W. Pun , Alex Aliper , Feng Ren , Alex Zhavoronkov
{"title":"从时钟到时钟:发现衰老和年龄相关疾病的治疗靶点","authors":"Jianjiu Chen , Geoffrey Ho Duen Leung , Howell Leung , Alina Ustiugova , Anastasia Shneyderman , Mike Korzinkin , David Gennert , Frank W. Pun , Alex Aliper , Feng Ren , Alex Zhavoronkov","doi":"10.1016/j.arr.2025.102871","DOIUrl":null,"url":null,"abstract":"<div><div>The aging population worldwide necessitates the development of novel therapeutics that enhance the quality of life by preventing and treating age-related diseases. In this review, we first discuss the advantages of a dual-purpose target identification strategy for aging and age-related diseases, with assessment of the hallmarks of aging as an approach to identify such dual-purpose targets. Resulting from a convergence of aging research with machine learning (ML) and other artificial intelligence (AI) models, aging clocks were initially developed as aging biomarkers, but its value in identifying therapeutic targets is also increasingly recognized. Building on recently published aging clocks, we reestablish a significant proportion of known drug targets by identifying clock-associated genes, highlighting the potential of these clocks for target identification. Lastly, we discuss other applications of aging clocks in drug development such as population stratification and disease and treatment monitoring. With the growing availability of multi-omics data and rapid advancements in ML and AI, we anticipate accelerated progress in aging clock research, paving the way for innovative treatments to meet the healthcare needs of a global aging population.</div></div>","PeriodicalId":55545,"journal":{"name":"Ageing Research Reviews","volume":"112 ","pages":"Article 102871"},"PeriodicalIF":12.4000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From clock to clock: Therapeutic target discovery for aging and age-related diseases\",\"authors\":\"Jianjiu Chen , Geoffrey Ho Duen Leung , Howell Leung , Alina Ustiugova , Anastasia Shneyderman , Mike Korzinkin , David Gennert , Frank W. Pun , Alex Aliper , Feng Ren , Alex Zhavoronkov\",\"doi\":\"10.1016/j.arr.2025.102871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The aging population worldwide necessitates the development of novel therapeutics that enhance the quality of life by preventing and treating age-related diseases. In this review, we first discuss the advantages of a dual-purpose target identification strategy for aging and age-related diseases, with assessment of the hallmarks of aging as an approach to identify such dual-purpose targets. Resulting from a convergence of aging research with machine learning (ML) and other artificial intelligence (AI) models, aging clocks were initially developed as aging biomarkers, but its value in identifying therapeutic targets is also increasingly recognized. Building on recently published aging clocks, we reestablish a significant proportion of known drug targets by identifying clock-associated genes, highlighting the potential of these clocks for target identification. Lastly, we discuss other applications of aging clocks in drug development such as population stratification and disease and treatment monitoring. With the growing availability of multi-omics data and rapid advancements in ML and AI, we anticipate accelerated progress in aging clock research, paving the way for innovative treatments to meet the healthcare needs of a global aging population.</div></div>\",\"PeriodicalId\":55545,\"journal\":{\"name\":\"Ageing Research Reviews\",\"volume\":\"112 \",\"pages\":\"Article 102871\"},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ageing Research Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S156816372500217X\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ageing Research Reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156816372500217X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
From clock to clock: Therapeutic target discovery for aging and age-related diseases
The aging population worldwide necessitates the development of novel therapeutics that enhance the quality of life by preventing and treating age-related diseases. In this review, we first discuss the advantages of a dual-purpose target identification strategy for aging and age-related diseases, with assessment of the hallmarks of aging as an approach to identify such dual-purpose targets. Resulting from a convergence of aging research with machine learning (ML) and other artificial intelligence (AI) models, aging clocks were initially developed as aging biomarkers, but its value in identifying therapeutic targets is also increasingly recognized. Building on recently published aging clocks, we reestablish a significant proportion of known drug targets by identifying clock-associated genes, highlighting the potential of these clocks for target identification. Lastly, we discuss other applications of aging clocks in drug development such as population stratification and disease and treatment monitoring. With the growing availability of multi-omics data and rapid advancements in ML and AI, we anticipate accelerated progress in aging clock research, paving the way for innovative treatments to meet the healthcare needs of a global aging population.
期刊介绍:
With the rise in average human life expectancy, the impact of ageing and age-related diseases on our society has become increasingly significant. Ageing research is now a focal point for numerous laboratories, encompassing leaders in genetics, molecular and cellular biology, biochemistry, and behavior. Ageing Research Reviews (ARR) serves as a cornerstone in this field, addressing emerging trends.
ARR aims to fill a substantial gap by providing critical reviews and viewpoints on evolving discoveries concerning the mechanisms of ageing and age-related diseases. The rapid progress in understanding the mechanisms controlling cellular proliferation, differentiation, and survival is unveiling new insights into the regulation of ageing. From telomerase to stem cells, and from energy to oxyradical metabolism, we are witnessing an exciting era in the multidisciplinary field of ageing research.
The journal explores the cellular and molecular foundations of interventions that extend lifespan, such as caloric restriction. It identifies the underpinnings of manipulations that extend lifespan, shedding light on novel approaches for preventing age-related diseases. ARR publishes articles on focused topics selected from the expansive field of ageing research, with a particular emphasis on the cellular and molecular mechanisms of the aging process. This includes age-related diseases like cancer, cardiovascular disease, diabetes, and neurodegenerative disorders. The journal also covers applications of basic ageing research to lifespan extension and disease prevention, offering a comprehensive platform for advancing our understanding of this critical field.