癌症RNA-seq中可解释的基于AI的特征选择

IF 4.2 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Hyein Seo , Jae-Ho Park , Jangho Lee , Byung Chang Chung
{"title":"癌症RNA-seq中可解释的基于AI的特征选择","authors":"Hyein Seo ,&nbsp;Jae-Ho Park ,&nbsp;Jangho Lee ,&nbsp;Byung Chang Chung","doi":"10.1016/j.icte.2025.05.004","DOIUrl":null,"url":null,"abstract":"<div><div>Identifying informative features in bioinformatics is challenging due to their small proportion within large datasets. We propose a scalable and interpretable feature selection framework for cancer RNA-seq by transforming non-image bio-data into 2D formats and applying convolutional neural networks (CNNs) with transfer learning for efficient classification. Explainable artificial intelligence (XAI) techniques identify and prioritize important features, while principal component analysis (PCA) determines the optimal number of selected features, ensuring transparency and reliability. Comparative analysis of CNN and XAI highlights the effectiveness of our approach, providing a robust framework for high-dimensional genomic data analysis with applications in cancer diagnosis and prognosis.</div></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"11 4","pages":"Pages 603-610"},"PeriodicalIF":4.2000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explainable AI based feature selection in cancer RNA-seq\",\"authors\":\"Hyein Seo ,&nbsp;Jae-Ho Park ,&nbsp;Jangho Lee ,&nbsp;Byung Chang Chung\",\"doi\":\"10.1016/j.icte.2025.05.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Identifying informative features in bioinformatics is challenging due to their small proportion within large datasets. We propose a scalable and interpretable feature selection framework for cancer RNA-seq by transforming non-image bio-data into 2D formats and applying convolutional neural networks (CNNs) with transfer learning for efficient classification. Explainable artificial intelligence (XAI) techniques identify and prioritize important features, while principal component analysis (PCA) determines the optimal number of selected features, ensuring transparency and reliability. Comparative analysis of CNN and XAI highlights the effectiveness of our approach, providing a robust framework for high-dimensional genomic data analysis with applications in cancer diagnosis and prognosis.</div></div>\",\"PeriodicalId\":48526,\"journal\":{\"name\":\"ICT Express\",\"volume\":\"11 4\",\"pages\":\"Pages 603-610\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICT Express\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405959525000669\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959525000669","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

识别生物信息学中的信息特征是具有挑战性的,因为它们在大数据集中的比例很小。我们提出了一个可扩展和可解释的癌症RNA-seq特征选择框架,通过将非图像生物数据转换为2D格式,并应用卷积神经网络(cnn)和迁移学习进行有效分类。可解释的人工智能(XAI)技术识别并优先考虑重要特征,而主成分分析(PCA)确定所选特征的最佳数量,确保透明度和可靠性。CNN和XAI的对比分析突出了我们方法的有效性,为高维基因组数据分析提供了一个强大的框架,可用于癌症诊断和预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explainable AI based feature selection in cancer RNA-seq
Identifying informative features in bioinformatics is challenging due to their small proportion within large datasets. We propose a scalable and interpretable feature selection framework for cancer RNA-seq by transforming non-image bio-data into 2D formats and applying convolutional neural networks (CNNs) with transfer learning for efficient classification. Explainable artificial intelligence (XAI) techniques identify and prioritize important features, while principal component analysis (PCA) determines the optimal number of selected features, ensuring transparency and reliability. Comparative analysis of CNN and XAI highlights the effectiveness of our approach, providing a robust framework for high-dimensional genomic data analysis with applications in cancer diagnosis and prognosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ICT Express
ICT Express Multiple-
CiteScore
10.20
自引率
1.90%
发文量
167
审稿时长
35 weeks
期刊介绍: The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信