基于脑电和语音的情感识别的多模态转换融合框架

IF 4.2 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Md Mahinur Alam , Mohamed A. Dini , Dong-Seong Kim , Taesoo Jun
{"title":"基于脑电和语音的情感识别的多模态转换融合框架","authors":"Md Mahinur Alam ,&nbsp;Mohamed A. Dini ,&nbsp;Dong-Seong Kim ,&nbsp;Taesoo Jun","doi":"10.1016/j.icte.2025.04.007","DOIUrl":null,"url":null,"abstract":"<div><div>In the evolving field of emotion recognition, which intersects psychology, human–computer interaction, and social robotics, there is a growing demand for more advanced and accurate frameworks. The traditional reliance on single-modal approaches has given way to a focus on multimodal emotion recognition, which offers enhanced performance by integrating multiple data sources. This paper introduces TMNet, an innovative multimodal emotion recognition framework that leverages both speech and Electroencephalography (EEG) signals to deliver superior accuracy. This framework utilizes cutting-edge technology, employing a Transformer model to effectively fuse the CNN-BiLSTM and BiGRU architectures, creating a unified multimodal representation for enhanced emotion recognition performance. By utilizing a diverse set of datasets RAVDESS, SAVEE, TESS, and CREMA-D for speech, along with EEG signals captured via the Muse headband. The multimodal model achieves impressive accuracies of 98.89% for speech and EEG signal processing.</div></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"11 4","pages":"Pages 657-665"},"PeriodicalIF":4.2000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TMNet: Transformer-fused multimodal framework for emotion recognition via EEG and speech\",\"authors\":\"Md Mahinur Alam ,&nbsp;Mohamed A. Dini ,&nbsp;Dong-Seong Kim ,&nbsp;Taesoo Jun\",\"doi\":\"10.1016/j.icte.2025.04.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the evolving field of emotion recognition, which intersects psychology, human–computer interaction, and social robotics, there is a growing demand for more advanced and accurate frameworks. The traditional reliance on single-modal approaches has given way to a focus on multimodal emotion recognition, which offers enhanced performance by integrating multiple data sources. This paper introduces TMNet, an innovative multimodal emotion recognition framework that leverages both speech and Electroencephalography (EEG) signals to deliver superior accuracy. This framework utilizes cutting-edge technology, employing a Transformer model to effectively fuse the CNN-BiLSTM and BiGRU architectures, creating a unified multimodal representation for enhanced emotion recognition performance. By utilizing a diverse set of datasets RAVDESS, SAVEE, TESS, and CREMA-D for speech, along with EEG signals captured via the Muse headband. The multimodal model achieves impressive accuracies of 98.89% for speech and EEG signal processing.</div></div>\",\"PeriodicalId\":48526,\"journal\":{\"name\":\"ICT Express\",\"volume\":\"11 4\",\"pages\":\"Pages 657-665\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICT Express\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405959525000517\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959525000517","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在不断发展的情感识别领域,它与心理学、人机交互和社交机器人技术相交叉,对更先进、更准确的框架的需求日益增长。传统的对单模态方法的依赖已经让位于对多模态情感识别的关注,多模态情感识别通过集成多个数据源提供增强的性能。本文介绍了TMNet,一个创新的多模态情感识别框架,利用语音和脑电图(EEG)信号来提供卓越的准确性。该框架利用尖端技术,采用Transformer模型有效融合CNN-BiLSTM和BiGRU架构,创建统一的多模态表示,以增强情感识别性能。通过利用RAVDESS、SAVEE、TESS和CREMA-D等不同的语音数据集,以及通过Muse头带捕获的脑电图信号。多模态模型在语音和脑电信号处理方面达到了令人印象深刻的98.89%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TMNet: Transformer-fused multimodal framework for emotion recognition via EEG and speech
In the evolving field of emotion recognition, which intersects psychology, human–computer interaction, and social robotics, there is a growing demand for more advanced and accurate frameworks. The traditional reliance on single-modal approaches has given way to a focus on multimodal emotion recognition, which offers enhanced performance by integrating multiple data sources. This paper introduces TMNet, an innovative multimodal emotion recognition framework that leverages both speech and Electroencephalography (EEG) signals to deliver superior accuracy. This framework utilizes cutting-edge technology, employing a Transformer model to effectively fuse the CNN-BiLSTM and BiGRU architectures, creating a unified multimodal representation for enhanced emotion recognition performance. By utilizing a diverse set of datasets RAVDESS, SAVEE, TESS, and CREMA-D for speech, along with EEG signals captured via the Muse headband. The multimodal model achieves impressive accuracies of 98.89% for speech and EEG signal processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ICT Express
ICT Express Multiple-
CiteScore
10.20
自引率
1.90%
发文量
167
审稿时长
35 weeks
期刊介绍: The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信