基于XGBoost和deep Q-network的多类不平衡数据妊娠风险预测

IF 4.2 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Kurnianingsih , Sou Nobukawa , Melyana Nurul Widyawati , Cipta Pramana , Nurseno Bayu Aji , Afandi Nur Aziz Thohari , Dwiana Hendrawati , Eri Sato-Shimokawara , Naoyuki Kubota
{"title":"基于XGBoost和deep Q-network的多类不平衡数据妊娠风险预测","authors":"Kurnianingsih ,&nbsp;Sou Nobukawa ,&nbsp;Melyana Nurul Widyawati ,&nbsp;Cipta Pramana ,&nbsp;Nurseno Bayu Aji ,&nbsp;Afandi Nur Aziz Thohari ,&nbsp;Dwiana Hendrawati ,&nbsp;Eri Sato-Shimokawara ,&nbsp;Naoyuki Kubota","doi":"10.1016/j.icte.2025.05.010","DOIUrl":null,"url":null,"abstract":"<div><div>Addressing imbalanced data is essential for accurate prediction. We propose a novel ensemble method of XGBoost and deep Q-learning networks (DQN) for pregnancy risk prediction. First, we train the majority class utilizing XGBoost. We subsequently utilize DQN to train the minority class into binary classifications. Finally, we use the trained models from DQN and XGBoost in ensemble learning to generate the final classification results. The XGBoost-DQN model achieves high performance with 0.9819 in precision, recall, F1-score, and accuracy, outperforming several baseline classifiers on private data from 5313 pregnant women in Indonesia and showing superior results on public datasets.</div></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"11 4","pages":"Pages 648-656"},"PeriodicalIF":4.2000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel ensemble XGBoost and deep Q-network for pregnancy risk prediction on multi-class imbalanced datasets\",\"authors\":\"Kurnianingsih ,&nbsp;Sou Nobukawa ,&nbsp;Melyana Nurul Widyawati ,&nbsp;Cipta Pramana ,&nbsp;Nurseno Bayu Aji ,&nbsp;Afandi Nur Aziz Thohari ,&nbsp;Dwiana Hendrawati ,&nbsp;Eri Sato-Shimokawara ,&nbsp;Naoyuki Kubota\",\"doi\":\"10.1016/j.icte.2025.05.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Addressing imbalanced data is essential for accurate prediction. We propose a novel ensemble method of XGBoost and deep Q-learning networks (DQN) for pregnancy risk prediction. First, we train the majority class utilizing XGBoost. We subsequently utilize DQN to train the minority class into binary classifications. Finally, we use the trained models from DQN and XGBoost in ensemble learning to generate the final classification results. The XGBoost-DQN model achieves high performance with 0.9819 in precision, recall, F1-score, and accuracy, outperforming several baseline classifiers on private data from 5313 pregnant women in Indonesia and showing superior results on public datasets.</div></div>\",\"PeriodicalId\":48526,\"journal\":{\"name\":\"ICT Express\",\"volume\":\"11 4\",\"pages\":\"Pages 648-656\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICT Express\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405959525000724\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959525000724","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

处理不平衡数据对于准确预测至关重要。我们提出了一种新的基于XGBoost和深度q -学习网络(DQN)的妊娠风险预测集成方法。首先,我们使用XGBoost训练大多数类。随后,我们利用DQN将少数类训练成二元分类。最后,我们使用集成学习中来自DQN和XGBoost的训练模型来生成最终的分类结果。XGBoost-DQN模型在精密度、召回率、f1得分和准确率方面均达到0.9819的高性能,在印度尼西亚5313名孕妇的私人数据上优于几个基线分类器,在公共数据集上表现优异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel ensemble XGBoost and deep Q-network for pregnancy risk prediction on multi-class imbalanced datasets
Addressing imbalanced data is essential for accurate prediction. We propose a novel ensemble method of XGBoost and deep Q-learning networks (DQN) for pregnancy risk prediction. First, we train the majority class utilizing XGBoost. We subsequently utilize DQN to train the minority class into binary classifications. Finally, we use the trained models from DQN and XGBoost in ensemble learning to generate the final classification results. The XGBoost-DQN model achieves high performance with 0.9819 in precision, recall, F1-score, and accuracy, outperforming several baseline classifiers on private data from 5313 pregnant women in Indonesia and showing superior results on public datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ICT Express
ICT Express Multiple-
CiteScore
10.20
自引率
1.90%
发文量
167
审稿时长
35 weeks
期刊介绍: The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信