EntUn:通过熵来缓解遗忘-保留困境

IF 4.2 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Dahuin Jung
{"title":"EntUn:通过熵来缓解遗忘-保留困境","authors":"Dahuin Jung","doi":"10.1016/j.icte.2025.06.007","DOIUrl":null,"url":null,"abstract":"<div><div>Advancements in natural language processing and computer vision have raised concerns about models inadvertently exposing private data and confidently misclassifying inputs. Machine unlearning has emerged as a solution, enabling the removal of specific data influences to meet privacy standards. This work focuses on unlearning in Instance-Removal (IR) and Class-Removal (CR) scenarios: IR targets the removal of individual data points, while CR eliminates all data related to a specific class. We propose <strong>EntUn</strong>, which maximizes entropy for the forget-set to reduce confidence in data to be forgotten and minimizes it for the retain-set to preserve discriminative power. An entropy-based intra-class mixup further stabilizes this process, using higher-entropy samples to guide controlled information removal. Experiments on CIFAR10, CIFAR100, and TinyImageNet show that <strong>EntUn</strong> outperforms state-of-the-art baselines, improving forgetting and enhancing privacy protection as confirmed by membership inference attack tests. This demonstrates entropy maximization as a robust strategy for effective unlearning.</div></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"11 4","pages":"Pages 643-647"},"PeriodicalIF":4.2000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EntUn: Mitigating the forget-retain dilemma in unlearning via entropy\",\"authors\":\"Dahuin Jung\",\"doi\":\"10.1016/j.icte.2025.06.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Advancements in natural language processing and computer vision have raised concerns about models inadvertently exposing private data and confidently misclassifying inputs. Machine unlearning has emerged as a solution, enabling the removal of specific data influences to meet privacy standards. This work focuses on unlearning in Instance-Removal (IR) and Class-Removal (CR) scenarios: IR targets the removal of individual data points, while CR eliminates all data related to a specific class. We propose <strong>EntUn</strong>, which maximizes entropy for the forget-set to reduce confidence in data to be forgotten and minimizes it for the retain-set to preserve discriminative power. An entropy-based intra-class mixup further stabilizes this process, using higher-entropy samples to guide controlled information removal. Experiments on CIFAR10, CIFAR100, and TinyImageNet show that <strong>EntUn</strong> outperforms state-of-the-art baselines, improving forgetting and enhancing privacy protection as confirmed by membership inference attack tests. This demonstrates entropy maximization as a robust strategy for effective unlearning.</div></div>\",\"PeriodicalId\":48526,\"journal\":{\"name\":\"ICT Express\",\"volume\":\"11 4\",\"pages\":\"Pages 643-647\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICT Express\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405959525000827\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959525000827","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

自然语言处理和计算机视觉的进步引起了人们对模型无意中暴露私人数据和自信地错误分类输入的担忧。机器学习已经成为一种解决方案,可以消除特定的数据影响,以满足隐私标准。这项工作的重点是实例删除(IR)和类删除(CR)场景中的学习:IR的目标是删除单个数据点,而CR则消除与特定类相关的所有数据。我们提出了EntUn,它使遗忘集的熵最大化以降低对被遗忘数据的置信度,使保留集的熵最小化以保持判别能力。基于熵的类内混合进一步稳定了这一过程,使用更高熵的样本来指导受控的信息删除。在CIFAR10、CIFAR100和TinyImageNet上的实验表明,EntUn优于最先进的基线,改善了遗忘,增强了隐私保护,这一点得到了成员推理攻击测试的证实。这表明熵最大化是一种有效的遗忘策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EntUn: Mitigating the forget-retain dilemma in unlearning via entropy
Advancements in natural language processing and computer vision have raised concerns about models inadvertently exposing private data and confidently misclassifying inputs. Machine unlearning has emerged as a solution, enabling the removal of specific data influences to meet privacy standards. This work focuses on unlearning in Instance-Removal (IR) and Class-Removal (CR) scenarios: IR targets the removal of individual data points, while CR eliminates all data related to a specific class. We propose EntUn, which maximizes entropy for the forget-set to reduce confidence in data to be forgotten and minimizes it for the retain-set to preserve discriminative power. An entropy-based intra-class mixup further stabilizes this process, using higher-entropy samples to guide controlled information removal. Experiments on CIFAR10, CIFAR100, and TinyImageNet show that EntUn outperforms state-of-the-art baselines, improving forgetting and enhancing privacy protection as confirmed by membership inference attack tests. This demonstrates entropy maximization as a robust strategy for effective unlearning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ICT Express
ICT Express Multiple-
CiteScore
10.20
自引率
1.90%
发文量
167
审稿时长
35 weeks
期刊介绍: The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信