情感人工智能的多模态数据集综述与批判性分析

IF 13.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Sadam Al-Azani, El-Sayed M. El-Alfy
{"title":"情感人工智能的多模态数据集综述与批判性分析","authors":"Sadam Al-Azani,&nbsp;El-Sayed M. El-Alfy","doi":"10.1007/s10462-025-11271-1","DOIUrl":null,"url":null,"abstract":"<div><p>With the increasing interest in digital technologies, emotion recognition plays an important role in several applications such as healthcare computer-aided diagnosis, social media analysis, opinion mining and recommendation systems, understanding human behavior and interaction in workplaces, effective communication and linguistic analysis, and cognitive human–machine interaction. This field is receiving a growing interest in recent years. In this paper, we present a thorough review of emotional artificial intelligence through identification and in-depth analysis of existing multimodal datasets along with their related research directions and methodologies. It establishes essential requirements for the development of a multimodal dataset and outlines challenges spanning its entire lifecycle, from recording to deployment. Moreover, a taxonomy of various categories and applications is introduced based on the key characteristics of various multimodal datasets. Finally, the paper concludes with discussions and insights into future directions and prospects for standard schemes to facilitate the efficient development of reliable and reusable benchmark datasets that can help researchers and developers advance this field.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 10","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-025-11271-1.pdf","citationCount":"0","resultStr":"{\"title\":\"A review and critical analysis of multimodal datasets for emotional AI\",\"authors\":\"Sadam Al-Azani,&nbsp;El-Sayed M. El-Alfy\",\"doi\":\"10.1007/s10462-025-11271-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the increasing interest in digital technologies, emotion recognition plays an important role in several applications such as healthcare computer-aided diagnosis, social media analysis, opinion mining and recommendation systems, understanding human behavior and interaction in workplaces, effective communication and linguistic analysis, and cognitive human–machine interaction. This field is receiving a growing interest in recent years. In this paper, we present a thorough review of emotional artificial intelligence through identification and in-depth analysis of existing multimodal datasets along with their related research directions and methodologies. It establishes essential requirements for the development of a multimodal dataset and outlines challenges spanning its entire lifecycle, from recording to deployment. Moreover, a taxonomy of various categories and applications is introduced based on the key characteristics of various multimodal datasets. Finally, the paper concludes with discussions and insights into future directions and prospects for standard schemes to facilitate the efficient development of reliable and reusable benchmark datasets that can help researchers and developers advance this field.</p></div>\",\"PeriodicalId\":8449,\"journal\":{\"name\":\"Artificial Intelligence Review\",\"volume\":\"58 10\",\"pages\":\"\"},\"PeriodicalIF\":13.9000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10462-025-11271-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence Review\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10462-025-11271-1\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-025-11271-1","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

随着人们对数字技术的兴趣日益浓厚,情感识别在医疗保健计算机辅助诊断、社交媒体分析、意见挖掘和推荐系统、理解工作场所中的人类行为和互动、有效的沟通和语言分析以及认知人机交互等多个应用中发挥着重要作用。近年来,这一领域受到越来越多的关注。在本文中,我们通过识别和深入分析现有的多模态数据集及其相关的研究方向和方法,对情感人工智能进行了全面的回顾。它建立了开发多模态数据集的基本要求,并概述了从记录到部署的整个生命周期中的挑战。此外,基于各种多模态数据集的关键特征,介绍了各种类别和应用的分类法。最后,本文对标准方案的未来方向和前景进行了讨论和见解,以促进可靠和可重用基准数据集的有效开发,从而帮助研究人员和开发人员推进该领域的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A review and critical analysis of multimodal datasets for emotional AI

With the increasing interest in digital technologies, emotion recognition plays an important role in several applications such as healthcare computer-aided diagnosis, social media analysis, opinion mining and recommendation systems, understanding human behavior and interaction in workplaces, effective communication and linguistic analysis, and cognitive human–machine interaction. This field is receiving a growing interest in recent years. In this paper, we present a thorough review of emotional artificial intelligence through identification and in-depth analysis of existing multimodal datasets along with their related research directions and methodologies. It establishes essential requirements for the development of a multimodal dataset and outlines challenges spanning its entire lifecycle, from recording to deployment. Moreover, a taxonomy of various categories and applications is introduced based on the key characteristics of various multimodal datasets. Finally, the paper concludes with discussions and insights into future directions and prospects for standard schemes to facilitate the efficient development of reliable and reusable benchmark datasets that can help researchers and developers advance this field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Intelligence Review
Artificial Intelligence Review 工程技术-计算机:人工智能
CiteScore
22.00
自引率
3.30%
发文量
194
审稿时长
5.3 months
期刊介绍: Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信