Shankar G. Alegaon, Shriram D. Ranade, Shankar Gharge, Rohini S. Kavalapure, Venkatasubramanian Ulaganathan
{"title":"喹啉类似物作为KSP抑制剂的计算和实验重新定位:来自自由能景观和PCA分析的见解","authors":"Shankar G. Alegaon, Shriram D. Ranade, Shankar Gharge, Rohini S. Kavalapure, Venkatasubramanian Ulaganathan","doi":"10.1007/s10822-025-00645-w","DOIUrl":null,"url":null,"abstract":"<div><p>Eg5 is a mitotic kinesin motor protein essential for the formation of bipolar spindles during cell division. Its inhibition disrupts mitosis, leading to cell cycle arrest and apoptosis in cancer cells. This makes Eg5 a promising target for chemotherapeutic interventions, especially in cases resistant to traditional treatments. In this study, a drug repurposing strategy was employed to design and synthesise quinoline-based Schiff base derivatives as potential Eg5 inhibitors. These compounds were subjected to in vitro biological evaluations, including cytotoxicity testing against the human breast cancer cell line MDA-MB-231 and the normal mouse fibroblast cell line L929 using the MTT assay. Enzymatic assays targeting Eg5 were also conducted. Among the synthesised molecules, compound (5) demonstrated significant Eg5 inhibition in enzymatic assays, with an IC<sub>50</sub> of 2.544 ± 0.810 µM in the Malachite Green assay and 4.03 ± 2.027 µM in the steady-state ATPase assay, and moderate inhibition against triple-negative breast cancer cells (MDA-MB-231). Computational studies, including molecular docking, molecular dynamics simulations, and MM/GBSA free energy calculations, were performed to analyse binding interactions. ADMET properties were predicted using the QikProp module. The findings suggest that targeting mitosis through Eg5 inhibition may offer a strategic approach in chemotherapy, potentially enhancing treatment efficacy.</p></div>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":"39 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational and experimental repositioning of quinoline analogues as KSP inhibitors: insights from free energy landscape and PCA analysis\",\"authors\":\"Shankar G. Alegaon, Shriram D. Ranade, Shankar Gharge, Rohini S. Kavalapure, Venkatasubramanian Ulaganathan\",\"doi\":\"10.1007/s10822-025-00645-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Eg5 is a mitotic kinesin motor protein essential for the formation of bipolar spindles during cell division. Its inhibition disrupts mitosis, leading to cell cycle arrest and apoptosis in cancer cells. This makes Eg5 a promising target for chemotherapeutic interventions, especially in cases resistant to traditional treatments. In this study, a drug repurposing strategy was employed to design and synthesise quinoline-based Schiff base derivatives as potential Eg5 inhibitors. These compounds were subjected to in vitro biological evaluations, including cytotoxicity testing against the human breast cancer cell line MDA-MB-231 and the normal mouse fibroblast cell line L929 using the MTT assay. Enzymatic assays targeting Eg5 were also conducted. Among the synthesised molecules, compound (5) demonstrated significant Eg5 inhibition in enzymatic assays, with an IC<sub>50</sub> of 2.544 ± 0.810 µM in the Malachite Green assay and 4.03 ± 2.027 µM in the steady-state ATPase assay, and moderate inhibition against triple-negative breast cancer cells (MDA-MB-231). Computational studies, including molecular docking, molecular dynamics simulations, and MM/GBSA free energy calculations, were performed to analyse binding interactions. ADMET properties were predicted using the QikProp module. The findings suggest that targeting mitosis through Eg5 inhibition may offer a strategic approach in chemotherapy, potentially enhancing treatment efficacy.</p></div>\",\"PeriodicalId\":621,\"journal\":{\"name\":\"Journal of Computer-Aided Molecular Design\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer-Aided Molecular Design\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10822-025-00645-w\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer-Aided Molecular Design","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10822-025-00645-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Computational and experimental repositioning of quinoline analogues as KSP inhibitors: insights from free energy landscape and PCA analysis
Eg5 is a mitotic kinesin motor protein essential for the formation of bipolar spindles during cell division. Its inhibition disrupts mitosis, leading to cell cycle arrest and apoptosis in cancer cells. This makes Eg5 a promising target for chemotherapeutic interventions, especially in cases resistant to traditional treatments. In this study, a drug repurposing strategy was employed to design and synthesise quinoline-based Schiff base derivatives as potential Eg5 inhibitors. These compounds were subjected to in vitro biological evaluations, including cytotoxicity testing against the human breast cancer cell line MDA-MB-231 and the normal mouse fibroblast cell line L929 using the MTT assay. Enzymatic assays targeting Eg5 were also conducted. Among the synthesised molecules, compound (5) demonstrated significant Eg5 inhibition in enzymatic assays, with an IC50 of 2.544 ± 0.810 µM in the Malachite Green assay and 4.03 ± 2.027 µM in the steady-state ATPase assay, and moderate inhibition against triple-negative breast cancer cells (MDA-MB-231). Computational studies, including molecular docking, molecular dynamics simulations, and MM/GBSA free energy calculations, were performed to analyse binding interactions. ADMET properties were predicted using the QikProp module. The findings suggest that targeting mitosis through Eg5 inhibition may offer a strategic approach in chemotherapy, potentially enhancing treatment efficacy.
期刊介绍:
The Journal of Computer-Aided Molecular Design provides a form for disseminating information on both the theory and the application of computer-based methods in the analysis and design of molecules. The scope of the journal encompasses papers which report new and original research and applications in the following areas:
- theoretical chemistry;
- computational chemistry;
- computer and molecular graphics;
- molecular modeling;
- protein engineering;
- drug design;
- expert systems;
- general structure-property relationships;
- molecular dynamics;
- chemical database development and usage.