优化花斑革菇产漆酶的发酵条件及其降解2,4-二氯酚的潜力。

IF 3.6 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Bioprocess and Biosystems Engineering Pub Date : 2025-11-01 Epub Date: 2025-08-08 DOI:10.1007/s00449-025-03214-5
Daiyi Zheng, Jiafeng Li, Zhiyuan Yu, Ping Wang, Qi Li, Linguo Zhao
{"title":"优化花斑革菇产漆酶的发酵条件及其降解2,4-二氯酚的潜力。","authors":"Daiyi Zheng, Jiafeng Li, Zhiyuan Yu, Ping Wang, Qi Li, Linguo Zhao","doi":"10.1007/s00449-025-03214-5","DOIUrl":null,"url":null,"abstract":"<p><p>As environmental pollution problems become increasingly severe, the treatment of persistent organic pollutants has emerged as a major challenge in the field of environmental protection. Laccase, as a green and efficient biocatalyst, demonstrates significant potential for application in environmental remediation due to its unique oxidation capabilities and broad substrate specificity. This study systematically investigated the optimization of conditions for laccase production by Coriolus versicolor, the impact of fed-batch feeding and co-cultivation with a second fungal strain on laccase secretion by C. versicolor, and the degradation performance of the produced laccase towards 2,4-dichlorophenol (2,4-DCP). The results showed that during submerged fermentation, the laccase activity of C. versicolor increased significantly over time, peaking on the 6th day, and then gradually declined due to nutrient depletion and metabolite accumulation. Optimization of wheat bran concentration (20 g/L) and initial pH value (5.0) facilitated laccase production. Additionally, fed-batch feeding during fermentation was beneficial for laccase secretion by C. versicolor. Co-cultivation with a filamentous fungus Penicillium significantly increased laccase production. On laccase-mediated degradation of 2,4-DCP, the optimal enzyme dosage (4.0 U/mL), substrate concentration (20 mg/L), and degradation time (60 h) were established. Addition of mediator 2, 2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (0.5 mmol/L) significantly improved degradation efficiency, achieving complete degradation of 2,4-DCP. HPLC analysis further verified the practical application of laccase in environmental remediation. This study provides technical support for the preparation of highly active laccase and its application in the remediation of organic pollutants through degradation.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"1817-1831"},"PeriodicalIF":3.6000,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing fermentation conditions for enhanced laccase production from Coriolus versicolor and its potential in degrading 2,4-dichlorophenol.\",\"authors\":\"Daiyi Zheng, Jiafeng Li, Zhiyuan Yu, Ping Wang, Qi Li, Linguo Zhao\",\"doi\":\"10.1007/s00449-025-03214-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As environmental pollution problems become increasingly severe, the treatment of persistent organic pollutants has emerged as a major challenge in the field of environmental protection. Laccase, as a green and efficient biocatalyst, demonstrates significant potential for application in environmental remediation due to its unique oxidation capabilities and broad substrate specificity. This study systematically investigated the optimization of conditions for laccase production by Coriolus versicolor, the impact of fed-batch feeding and co-cultivation with a second fungal strain on laccase secretion by C. versicolor, and the degradation performance of the produced laccase towards 2,4-dichlorophenol (2,4-DCP). The results showed that during submerged fermentation, the laccase activity of C. versicolor increased significantly over time, peaking on the 6th day, and then gradually declined due to nutrient depletion and metabolite accumulation. Optimization of wheat bran concentration (20 g/L) and initial pH value (5.0) facilitated laccase production. Additionally, fed-batch feeding during fermentation was beneficial for laccase secretion by C. versicolor. Co-cultivation with a filamentous fungus Penicillium significantly increased laccase production. On laccase-mediated degradation of 2,4-DCP, the optimal enzyme dosage (4.0 U/mL), substrate concentration (20 mg/L), and degradation time (60 h) were established. Addition of mediator 2, 2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (0.5 mmol/L) significantly improved degradation efficiency, achieving complete degradation of 2,4-DCP. HPLC analysis further verified the practical application of laccase in environmental remediation. This study provides technical support for the preparation of highly active laccase and its application in the remediation of organic pollutants through degradation.</p>\",\"PeriodicalId\":9024,\"journal\":{\"name\":\"Bioprocess and Biosystems Engineering\",\"volume\":\" \",\"pages\":\"1817-1831\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioprocess and Biosystems Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00449-025-03214-5\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-025-03214-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

随着环境污染问题的日益严重,持久性有机污染物的治理已成为环境保护领域的重大挑战。漆酶作为一种绿色高效的生物催化剂,由于其独特的氧化能力和广泛的底物特异性,在环境修复中显示出巨大的应用潜力。本研究系统地研究了花色科里奥利菌生产漆酶的条件优化、分批投料和与第二种真菌共培养对花色科里奥利菌分泌漆酶的影响,以及所产漆酶对2,4-二氯苯酚(2,4- dcp)的降解性能。结果表明,在潜水发酵过程中,随着发酵时间的延长,紫孢霉漆酶活性显著升高,在第6天达到峰值,随后由于养分消耗和代谢物积累,漆酶活性逐渐下降。优化麦麸浓度(20 g/L)和初始pH值(5.0)有利于漆酶的生成。此外,发酵过程中分批进料有利于紫孢杆菌分泌漆酶。与丝状真菌青霉菌共培养可显著提高漆酶产量。在漆酶介导的2,4- dcp降解实验中,确定了最佳酶投加量(4.0 U/mL)、底物浓度(20 mg/L)和降解时间(60 h)。添加介体2,2′-氮基-双(3-乙基苯并噻唑-6-磺酸)(0.5 mmol/L)可显著提高降解效率,实现2,4- dcp的完全降解。HPLC分析进一步验证了漆酶在环境修复中的实际应用。本研究为高活性漆酶的制备及其在有机污染物降解修复中的应用提供了技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing fermentation conditions for enhanced laccase production from Coriolus versicolor and its potential in degrading 2,4-dichlorophenol.

As environmental pollution problems become increasingly severe, the treatment of persistent organic pollutants has emerged as a major challenge in the field of environmental protection. Laccase, as a green and efficient biocatalyst, demonstrates significant potential for application in environmental remediation due to its unique oxidation capabilities and broad substrate specificity. This study systematically investigated the optimization of conditions for laccase production by Coriolus versicolor, the impact of fed-batch feeding and co-cultivation with a second fungal strain on laccase secretion by C. versicolor, and the degradation performance of the produced laccase towards 2,4-dichlorophenol (2,4-DCP). The results showed that during submerged fermentation, the laccase activity of C. versicolor increased significantly over time, peaking on the 6th day, and then gradually declined due to nutrient depletion and metabolite accumulation. Optimization of wheat bran concentration (20 g/L) and initial pH value (5.0) facilitated laccase production. Additionally, fed-batch feeding during fermentation was beneficial for laccase secretion by C. versicolor. Co-cultivation with a filamentous fungus Penicillium significantly increased laccase production. On laccase-mediated degradation of 2,4-DCP, the optimal enzyme dosage (4.0 U/mL), substrate concentration (20 mg/L), and degradation time (60 h) were established. Addition of mediator 2, 2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (0.5 mmol/L) significantly improved degradation efficiency, achieving complete degradation of 2,4-DCP. HPLC analysis further verified the practical application of laccase in environmental remediation. This study provides technical support for the preparation of highly active laccase and its application in the remediation of organic pollutants through degradation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioprocess and Biosystems Engineering
Bioprocess and Biosystems Engineering 工程技术-工程:化工
CiteScore
7.90
自引率
2.60%
发文量
147
审稿时长
2.6 months
期刊介绍: Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes. Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged. The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信