人工智能驱动的可定制膜渗透环肽的从头设计。

IF 3.1 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yu Yunxiang, Zhang Zhou, Guo Hai, Ren Xinlu, Zhang Yuting, Meng Jianna, Zhou Yi, Han Jian, Tian Jinhui, Yan Wenjin, Huang Jinqi
{"title":"人工智能驱动的可定制膜渗透环肽的从头设计。","authors":"Yu Yunxiang,&nbsp;Zhang Zhou,&nbsp;Guo Hai,&nbsp;Ren Xinlu,&nbsp;Zhang Yuting,&nbsp;Meng Jianna,&nbsp;Zhou Yi,&nbsp;Han Jian,&nbsp;Tian Jinhui,&nbsp;Yan Wenjin,&nbsp;Huang Jinqi","doi":"10.1007/s10822-025-00639-8","DOIUrl":null,"url":null,"abstract":"<div><p>Cyclic peptides, prized for their remarkable bioactivity and stability, hold great promise across various fields. Yet, designing membrane-penetrating bioactive cyclic peptides via traditional methods is complex and resource-intensive. To address this, we introduce CCPep, an AI-driven de novo design framework that combines reinforcement and contrastive learning for efficient, customizable membrane-penetrating cyclic peptide design. It assesses peptide membrane penetration with scoring models and optimizes transmembrane ability through reinforcement learning. Customization of peptides with specific properties is achieved via custom functions, while contrastive learning incorporates molecular dynamics simulation time series to capture dynamic penetration features, enhancing model performance. Result shows that CCPep generated cyclic peptide sequences have a promising membrane penetration rate, with customizable chain length, natural amino acid ratio, and target segments. This framework offers an efficient tool for cyclic peptide drug design and paves the way for AI-driven multi-objective molecule design.</p></div>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":"39 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ai-driven de novo design of customizable membrane permeable cyclic peptides\",\"authors\":\"Yu Yunxiang,&nbsp;Zhang Zhou,&nbsp;Guo Hai,&nbsp;Ren Xinlu,&nbsp;Zhang Yuting,&nbsp;Meng Jianna,&nbsp;Zhou Yi,&nbsp;Han Jian,&nbsp;Tian Jinhui,&nbsp;Yan Wenjin,&nbsp;Huang Jinqi\",\"doi\":\"10.1007/s10822-025-00639-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cyclic peptides, prized for their remarkable bioactivity and stability, hold great promise across various fields. Yet, designing membrane-penetrating bioactive cyclic peptides via traditional methods is complex and resource-intensive. To address this, we introduce CCPep, an AI-driven de novo design framework that combines reinforcement and contrastive learning for efficient, customizable membrane-penetrating cyclic peptide design. It assesses peptide membrane penetration with scoring models and optimizes transmembrane ability through reinforcement learning. Customization of peptides with specific properties is achieved via custom functions, while contrastive learning incorporates molecular dynamics simulation time series to capture dynamic penetration features, enhancing model performance. Result shows that CCPep generated cyclic peptide sequences have a promising membrane penetration rate, with customizable chain length, natural amino acid ratio, and target segments. This framework offers an efficient tool for cyclic peptide drug design and paves the way for AI-driven multi-objective molecule design.</p></div>\",\"PeriodicalId\":621,\"journal\":{\"name\":\"Journal of Computer-Aided Molecular Design\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer-Aided Molecular Design\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10822-025-00639-8\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer-Aided Molecular Design","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10822-025-00639-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

环肽因其显著的生物活性和稳定性而受到重视,在各个领域都有很大的前景。然而,通过传统方法设计穿膜生物活性环肽是复杂和资源密集的。为了解决这个问题,我们引入了CCPep,这是一个人工智能驱动的从头设计框架,结合了强化和对比学习,实现了高效、可定制的穿膜环肽设计。它通过评分模型评估肽膜穿透性,并通过强化学习优化跨膜能力。通过自定义函数实现具有特定属性的肽定制,而对比学习结合分子动力学模拟时间序列来捕获动态渗透特征,增强模型性能。结果表明,CCPep生成的环肽序列具有良好的膜渗透率,具有可定制的链长、天然氨基酸比例和目标片段。该框架为环肽药物设计提供了一个有效的工具,并为人工智能驱动的多目标分子设计铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ai-driven de novo design of customizable membrane permeable cyclic peptides

Cyclic peptides, prized for their remarkable bioactivity and stability, hold great promise across various fields. Yet, designing membrane-penetrating bioactive cyclic peptides via traditional methods is complex and resource-intensive. To address this, we introduce CCPep, an AI-driven de novo design framework that combines reinforcement and contrastive learning for efficient, customizable membrane-penetrating cyclic peptide design. It assesses peptide membrane penetration with scoring models and optimizes transmembrane ability through reinforcement learning. Customization of peptides with specific properties is achieved via custom functions, while contrastive learning incorporates molecular dynamics simulation time series to capture dynamic penetration features, enhancing model performance. Result shows that CCPep generated cyclic peptide sequences have a promising membrane penetration rate, with customizable chain length, natural amino acid ratio, and target segments. This framework offers an efficient tool for cyclic peptide drug design and paves the way for AI-driven multi-objective molecule design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer-Aided Molecular Design
Journal of Computer-Aided Molecular Design 生物-计算机:跨学科应用
CiteScore
8.00
自引率
8.60%
发文量
56
审稿时长
3 months
期刊介绍: The Journal of Computer-Aided Molecular Design provides a form for disseminating information on both the theory and the application of computer-based methods in the analysis and design of molecules. The scope of the journal encompasses papers which report new and original research and applications in the following areas: - theoretical chemistry; - computational chemistry; - computer and molecular graphics; - molecular modeling; - protein engineering; - drug design; - expert systems; - general structure-property relationships; - molecular dynamics; - chemical database development and usage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信