Tianxiang Dai, Yixuan Shao, Chenkai Mao, Yu Wu, Sara Azzouz, You Zhou, Jonathan A. Fan
{"title":"利用几何神经参数化技术塑造自由形状纳米光子器件","authors":"Tianxiang Dai, Yixuan Shao, Chenkai Mao, Yu Wu, Sara Azzouz, You Zhou, Jonathan A. Fan","doi":"10.1038/s41524-025-01752-w","DOIUrl":null,"url":null,"abstract":"<p>Nanophotonic freeform design has the potential to push the performance of optical components to new limits, but there remains a challenge to effectively perform optimization while reliably enforcing design and manufacturing constraints. We present Neuroshaper, a framework for freeform geometric parameterization in which nanophotonic device layouts are defined using an analytic neural network representation. Neuroshaper serves as a qualitatively new way to perform shape optimization by capturing multi-scalar, freeform geometries in an overparameterized representation scheme, enabling effective optimization in a smoothened, high dimensional geometric design space. We show that Neuroshaper can enforce constraints and topology manipulation in a manner where local constraints lead to global changes in device morphology. We further show numerically and experimentally that Neuroshaper can apply to a diversity of nanophotonic devices. The versatility and capabilities of Neuroshaper reflect the ability of neural representation to augment concepts in topological design.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"6 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shaping freeform nanophotonic devices with geometric neural parameterization\",\"authors\":\"Tianxiang Dai, Yixuan Shao, Chenkai Mao, Yu Wu, Sara Azzouz, You Zhou, Jonathan A. Fan\",\"doi\":\"10.1038/s41524-025-01752-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nanophotonic freeform design has the potential to push the performance of optical components to new limits, but there remains a challenge to effectively perform optimization while reliably enforcing design and manufacturing constraints. We present Neuroshaper, a framework for freeform geometric parameterization in which nanophotonic device layouts are defined using an analytic neural network representation. Neuroshaper serves as a qualitatively new way to perform shape optimization by capturing multi-scalar, freeform geometries in an overparameterized representation scheme, enabling effective optimization in a smoothened, high dimensional geometric design space. We show that Neuroshaper can enforce constraints and topology manipulation in a manner where local constraints lead to global changes in device morphology. We further show numerically and experimentally that Neuroshaper can apply to a diversity of nanophotonic devices. The versatility and capabilities of Neuroshaper reflect the ability of neural representation to augment concepts in topological design.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2025-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01752-w\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01752-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Shaping freeform nanophotonic devices with geometric neural parameterization
Nanophotonic freeform design has the potential to push the performance of optical components to new limits, but there remains a challenge to effectively perform optimization while reliably enforcing design and manufacturing constraints. We present Neuroshaper, a framework for freeform geometric parameterization in which nanophotonic device layouts are defined using an analytic neural network representation. Neuroshaper serves as a qualitatively new way to perform shape optimization by capturing multi-scalar, freeform geometries in an overparameterized representation scheme, enabling effective optimization in a smoothened, high dimensional geometric design space. We show that Neuroshaper can enforce constraints and topology manipulation in a manner where local constraints lead to global changes in device morphology. We further show numerically and experimentally that Neuroshaper can apply to a diversity of nanophotonic devices. The versatility and capabilities of Neuroshaper reflect the ability of neural representation to augment concepts in topological design.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.