利用等离子体s -方案异质结设计界面电荷转移动力学用于机器学习辅助双模免疫分析。

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Zhen Yang, Jing Wang, Jiahui Zhao, Jin-Xin Liu, Hao Cheng, Xianbo Sun, Liangyu Sun, Chuanping Li* and Kui Zhang*, 
{"title":"利用等离子体s -方案异质结设计界面电荷转移动力学用于机器学习辅助双模免疫分析。","authors":"Zhen Yang,&nbsp;Jing Wang,&nbsp;Jiahui Zhao,&nbsp;Jin-Xin Liu,&nbsp;Hao Cheng,&nbsp;Xianbo Sun,&nbsp;Liangyu Sun,&nbsp;Chuanping Li* and Kui Zhang*,&nbsp;","doi":"10.1021/acs.analchem.5c03904","DOIUrl":null,"url":null,"abstract":"<p >The development of photoelectrochemical (PEC)-coupled dual-mode biosensors, combined with multivariate regression analysis, is pivotal for advancing point-of-care disease marker diagnostics. Herein, we present a machine learning (ML)-powered dual-channel immunoassay. This platform integrates plasmonic TiO<sub>2</sub>@NH<sub>2</sub>-MIL-125/Au S-scheme photoelectrode with nanoconfined fluorescent CdSe@ZIF-8 probes. The optimized photoelectrode exhibits a remarkable photocurrent density of 10.29 μA/cm<sup>2</sup>, representing a 581% enhancement over that of pristine TiO<sub>2</sub> (1.77 μA/cm<sup>2</sup>). Systematic investigation of interfacial charge transfer dynamics via density functional theory and in situ electron paramagnetic resonance analysis reveals synergistic plasmonic near-field coupling and robust built-in electric fields within the TiO<sub>2</sub>@NH<sub>2</sub>-MIL-125/Au. Leveraging this advanced photoelectrode, a smartphone-compatible PEC-coupled dual-mode biosensor is self-constructed and achieves exceptional detection capabilities for cardiac troponin I (cTnI), with an ultralow limit of detection of 6.01 fg/mL. Dual-mode signals (photocurrent and fluorescence RGB values) are processed by designing a recursive correlation framework incorporating a random forest algorithm for feature optimization. A convolutional neural network trained on multivariate data sets from 224 samples generates a robust regression model for cTnI quantification. This model demonstrates outstanding predictive ability, characterized by high accuracy (<i>R</i><sup>2</sup> = 0.9966) and low prediction errors (5%). This study establishes an intelligent, field-deployable platform that merges dual-mode sensing with ML analytics for transformative point-of-care diagnostics.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"97 32","pages":"17882–17890"},"PeriodicalIF":6.7000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering the Interfacial Charge Transfer Dynamics by Plasmonic S-Scheme Heterojunctions for Machine-Learning-Assisted Dual-Mode Immunoassays\",\"authors\":\"Zhen Yang,&nbsp;Jing Wang,&nbsp;Jiahui Zhao,&nbsp;Jin-Xin Liu,&nbsp;Hao Cheng,&nbsp;Xianbo Sun,&nbsp;Liangyu Sun,&nbsp;Chuanping Li* and Kui Zhang*,&nbsp;\",\"doi\":\"10.1021/acs.analchem.5c03904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The development of photoelectrochemical (PEC)-coupled dual-mode biosensors, combined with multivariate regression analysis, is pivotal for advancing point-of-care disease marker diagnostics. Herein, we present a machine learning (ML)-powered dual-channel immunoassay. This platform integrates plasmonic TiO<sub>2</sub>@NH<sub>2</sub>-MIL-125/Au S-scheme photoelectrode with nanoconfined fluorescent CdSe@ZIF-8 probes. The optimized photoelectrode exhibits a remarkable photocurrent density of 10.29 μA/cm<sup>2</sup>, representing a 581% enhancement over that of pristine TiO<sub>2</sub> (1.77 μA/cm<sup>2</sup>). Systematic investigation of interfacial charge transfer dynamics via density functional theory and in situ electron paramagnetic resonance analysis reveals synergistic plasmonic near-field coupling and robust built-in electric fields within the TiO<sub>2</sub>@NH<sub>2</sub>-MIL-125/Au. Leveraging this advanced photoelectrode, a smartphone-compatible PEC-coupled dual-mode biosensor is self-constructed and achieves exceptional detection capabilities for cardiac troponin I (cTnI), with an ultralow limit of detection of 6.01 fg/mL. Dual-mode signals (photocurrent and fluorescence RGB values) are processed by designing a recursive correlation framework incorporating a random forest algorithm for feature optimization. A convolutional neural network trained on multivariate data sets from 224 samples generates a robust regression model for cTnI quantification. This model demonstrates outstanding predictive ability, characterized by high accuracy (<i>R</i><sup>2</sup> = 0.9966) and low prediction errors (5%). This study establishes an intelligent, field-deployable platform that merges dual-mode sensing with ML analytics for transformative point-of-care diagnostics.</p>\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"97 32\",\"pages\":\"17882–17890\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.analchem.5c03904\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.analchem.5c03904","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

光电电化学(PEC)耦合双模生物传感器的发展,结合多元回归分析,是推进疾病标志物诊断的关键。在这里,我们提出了一种机器学习(ML)驱动的双通道免疫测定。该平台集成了等离子体TiO2@NH2-MIL-125/Au s方案光电极和纳米受限荧光CdSe@ZIF-8探针。优化后的光电极光电流密度为10.29 μA/cm2,比原始TiO2 (1.77 μA/cm2)提高了581%。通过密度泛函理论和原位电子顺磁共振分析系统地研究了界面电荷传递动力学,揭示了TiO2@NH2-MIL-125/Au内协同等离子体近场耦合和强大的内置电场。利用这种先进的光电极,智能手机兼容的pecc耦合双模生物传感器是自构建的,并实现了心脏肌钙蛋白I (cTnI)的卓越检测能力,其超低检测限为6.01 fg/mL。通过设计递归相关框架,结合随机森林算法进行特征优化,处理双模信号(光电流和荧光RGB值)。在224个样本的多变量数据集上训练卷积神经网络,生成了用于cTnI量化的鲁棒回归模型。该模型具有较高的预测精度(R2 = 0.9966)和较低的预测误差(5%),具有较好的预测能力。本研究建立了一个智能的、可现场部署的平台,该平台将双模式传感与ML分析相结合,用于变革性的护理点诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Engineering the Interfacial Charge Transfer Dynamics by Plasmonic S-Scheme Heterojunctions for Machine-Learning-Assisted Dual-Mode Immunoassays

Engineering the Interfacial Charge Transfer Dynamics by Plasmonic S-Scheme Heterojunctions for Machine-Learning-Assisted Dual-Mode Immunoassays

The development of photoelectrochemical (PEC)-coupled dual-mode biosensors, combined with multivariate regression analysis, is pivotal for advancing point-of-care disease marker diagnostics. Herein, we present a machine learning (ML)-powered dual-channel immunoassay. This platform integrates plasmonic TiO2@NH2-MIL-125/Au S-scheme photoelectrode with nanoconfined fluorescent CdSe@ZIF-8 probes. The optimized photoelectrode exhibits a remarkable photocurrent density of 10.29 μA/cm2, representing a 581% enhancement over that of pristine TiO2 (1.77 μA/cm2). Systematic investigation of interfacial charge transfer dynamics via density functional theory and in situ electron paramagnetic resonance analysis reveals synergistic plasmonic near-field coupling and robust built-in electric fields within the TiO2@NH2-MIL-125/Au. Leveraging this advanced photoelectrode, a smartphone-compatible PEC-coupled dual-mode biosensor is self-constructed and achieves exceptional detection capabilities for cardiac troponin I (cTnI), with an ultralow limit of detection of 6.01 fg/mL. Dual-mode signals (photocurrent and fluorescence RGB values) are processed by designing a recursive correlation framework incorporating a random forest algorithm for feature optimization. A convolutional neural network trained on multivariate data sets from 224 samples generates a robust regression model for cTnI quantification. This model demonstrates outstanding predictive ability, characterized by high accuracy (R2 = 0.9966) and low prediction errors (5%). This study establishes an intelligent, field-deployable platform that merges dual-mode sensing with ML analytics for transformative point-of-care diagnostics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信