基于光声信号到图像的卷积神经网络缺陷检测。

IF 1.7 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION
Zekeriya Balcı, Ahmet Mert
{"title":"基于光声信号到图像的卷积神经网络缺陷检测。","authors":"Zekeriya Balcı, Ahmet Mert","doi":"10.1063/5.0275680","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we propose a novel photoacoustic (PA) signal to image conversion based convolutional neural network (CNN) model for defect detection in materials. A low-cost computer aided PA triggering and acquisition device has been developed, and then, PA signals are stored for four types of defected and intact materials. Variational mode decomposition is applied to the dataset to extract intrinsic mode functions to convert PA signals to images as the first step of the feature extraction, and then, a lightweight CNN architecture is trained and tested using converted grayscale PA images to detect as defected or intact material. The proposed model is performed on the PA signals of aluminum, iron, wood, and plastic depending on the within-class and all-class evaluation strategies. The mean accuracy levels of 0.977 (up to 1.0) for within-class (material dependent) and 0.942 (up to 0.955) for all-class (material independent) are yielded.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"96 8","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photoacoustic signal to image based convolutional neural network for defect detection.\",\"authors\":\"Zekeriya Balcı, Ahmet Mert\",\"doi\":\"10.1063/5.0275680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we propose a novel photoacoustic (PA) signal to image conversion based convolutional neural network (CNN) model for defect detection in materials. A low-cost computer aided PA triggering and acquisition device has been developed, and then, PA signals are stored for four types of defected and intact materials. Variational mode decomposition is applied to the dataset to extract intrinsic mode functions to convert PA signals to images as the first step of the feature extraction, and then, a lightweight CNN architecture is trained and tested using converted grayscale PA images to detect as defected or intact material. The proposed model is performed on the PA signals of aluminum, iron, wood, and plastic depending on the within-class and all-class evaluation strategies. The mean accuracy levels of 0.977 (up to 1.0) for within-class (material dependent) and 0.942 (up to 0.955) for all-class (material independent) are yielded.</p>\",\"PeriodicalId\":21111,\"journal\":{\"name\":\"Review of Scientific Instruments\",\"volume\":\"96 8\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Review of Scientific Instruments\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0275680\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0275680","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种基于卷积神经网络(CNN)的新型光声(PA)信号到图像转换的材料缺陷检测模型。研制了一种低成本的计算机辅助声压触发采集装置,对四种缺陷和完好材料的声压信号进行存储。对数据集进行变分模态分解,提取固有模态函数,将PA信号转换为图像,作为特征提取的第一步,然后使用转换后的灰度PA图像训练和测试轻量级CNN架构,以检测缺陷或完整的材料。根据类内和全类评估策略,对铝、铁、木和塑料的PA信号进行了模型分析。类内(材料依赖)的平均准确度水平为0.977(最高1.0),全类(材料独立)的平均准确度水平为0.942(最高0.955)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Photoacoustic signal to image based convolutional neural network for defect detection.

In this paper, we propose a novel photoacoustic (PA) signal to image conversion based convolutional neural network (CNN) model for defect detection in materials. A low-cost computer aided PA triggering and acquisition device has been developed, and then, PA signals are stored for four types of defected and intact materials. Variational mode decomposition is applied to the dataset to extract intrinsic mode functions to convert PA signals to images as the first step of the feature extraction, and then, a lightweight CNN architecture is trained and tested using converted grayscale PA images to detect as defected or intact material. The proposed model is performed on the PA signals of aluminum, iron, wood, and plastic depending on the within-class and all-class evaluation strategies. The mean accuracy levels of 0.977 (up to 1.0) for within-class (material dependent) and 0.942 (up to 0.955) for all-class (material independent) are yielded.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Review of Scientific Instruments
Review of Scientific Instruments 工程技术-物理:应用
CiteScore
3.00
自引率
12.50%
发文量
758
审稿时长
2.6 months
期刊介绍: Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信