{"title":"孤对电子和小原子介导tlse型ABX2化合物的异常导热性","authors":"Zhengtong Xue , Yiyang Sun , Jiawei Zhang","doi":"10.1016/j.mtphys.2025.101832","DOIUrl":null,"url":null,"abstract":"<div><div>Crystalline materials with intrinsically low lattice thermal conductivity (<em>κ</em><sub>L</sub>) are crucial for thermoelectric and thermal insulating applications. In recent years, TlSe-type ABX<sub>2</sub> compounds have attracted considerable attention owing to their ultralow <em>κ</em><sub>L</sub>, typically attributed to rattling cations with lone pair electrons. However, a systematic understanding of the microscopic mechanisms governing thermal transport trends in these structures remains elusive. Combining first-principles calculations and analysis, we reveal distinct and synergistic roles of lone pair electrons and atomic size effects in suppressing <em>κ</em><sub>L</sub>. Counterintuitively, introducing lone pair electrons (A = Ga, In, Tl) reverses conventional mass-dependent trends, increasing <em>κ</em><sub>L</sub> with average atomic mass due to enhanced anharmonicity related to lone pair activity evidenced by large Grüneisen parameters and reduced phonon lifetimes. Conversely, in systems lacking lone pairs, atomic size effects dominate; undersized atoms (e.g., Na<sup>+</sup> in NaInTe<sub>2</sub>) induce strong anharmonicity, yielding lower <em>κ</em><sub>L</sub> (∼1.33 W m<sup>−1</sup> K<sup>−1</sup>) than heavier analogs (RbInTe<sub>2</sub>, ∼1.45 W m<sup>−1</sup> K<sup>−1</sup>). Strikingly, the synergy of lone pair electrons and undersized atoms in GaInTe<sub>2</sub> amplifies phonon scattering, achieving lower <em>κ</em><sub>L</sub> (∼0.58 W m<sup>−1</sup> K<sup>−1</sup>) than that of InTe (∼0.64 W m<sup>−1</sup> K<sup>−1</sup>). This work elucidates the competing mechanisms in ABX<sub>2</sub> systems and establishes a dual design strategy—leveraging lone pair electrons and atomic size mismatch—for engineering materials with intrinsically ultralow thermal conductivity.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"57 ","pages":"Article 101832"},"PeriodicalIF":9.7000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lone pair electrons and undersized atoms mediate anomalous thermal conductivity in TlSe-type ABX2 compounds\",\"authors\":\"Zhengtong Xue , Yiyang Sun , Jiawei Zhang\",\"doi\":\"10.1016/j.mtphys.2025.101832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Crystalline materials with intrinsically low lattice thermal conductivity (<em>κ</em><sub>L</sub>) are crucial for thermoelectric and thermal insulating applications. In recent years, TlSe-type ABX<sub>2</sub> compounds have attracted considerable attention owing to their ultralow <em>κ</em><sub>L</sub>, typically attributed to rattling cations with lone pair electrons. However, a systematic understanding of the microscopic mechanisms governing thermal transport trends in these structures remains elusive. Combining first-principles calculations and analysis, we reveal distinct and synergistic roles of lone pair electrons and atomic size effects in suppressing <em>κ</em><sub>L</sub>. Counterintuitively, introducing lone pair electrons (A = Ga, In, Tl) reverses conventional mass-dependent trends, increasing <em>κ</em><sub>L</sub> with average atomic mass due to enhanced anharmonicity related to lone pair activity evidenced by large Grüneisen parameters and reduced phonon lifetimes. Conversely, in systems lacking lone pairs, atomic size effects dominate; undersized atoms (e.g., Na<sup>+</sup> in NaInTe<sub>2</sub>) induce strong anharmonicity, yielding lower <em>κ</em><sub>L</sub> (∼1.33 W m<sup>−1</sup> K<sup>−1</sup>) than heavier analogs (RbInTe<sub>2</sub>, ∼1.45 W m<sup>−1</sup> K<sup>−1</sup>). Strikingly, the synergy of lone pair electrons and undersized atoms in GaInTe<sub>2</sub> amplifies phonon scattering, achieving lower <em>κ</em><sub>L</sub> (∼0.58 W m<sup>−1</sup> K<sup>−1</sup>) than that of InTe (∼0.64 W m<sup>−1</sup> K<sup>−1</sup>). This work elucidates the competing mechanisms in ABX<sub>2</sub> systems and establishes a dual design strategy—leveraging lone pair electrons and atomic size mismatch—for engineering materials with intrinsically ultralow thermal conductivity.</div></div>\",\"PeriodicalId\":18253,\"journal\":{\"name\":\"Materials Today Physics\",\"volume\":\"57 \",\"pages\":\"Article 101832\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542529325001889\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325001889","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
具有低晶格导热系数(κL)的晶体材料在热电和隔热应用中是至关重要的。近年来,tlse型ABX2化合物由于其超低κL而引起了人们的广泛关注,这些化合物通常是由具有孤对电子的咔嗒阳离子引起的。然而,对这些结构中控制热输运趋势的微观机制的系统理解仍然是难以捉摸的。结合第一性原理计算和分析,我们揭示了孤对电子和原子尺寸效应在抑制κL中的独特和协同作用。与直觉相反,引入孤对电子(A = Ga, In, Tl)逆转了传统的质量依赖趋势,随着平均原子质量的增加,κL增加,这是由于与孤对活性相关的非谐波性增强,这可以通过大的颗粒尼森参数和减少的声子寿命来证明。相反,在缺乏孤对的系统中,原子尺寸效应占主导地位;较小的原子(例如,NaInTe2中的Na+)诱导强烈的非调和性,产生较低的κL (~ 1.33 W m-1 K-1)比较重的类似物(RbInTe2, ~ 1.45 W m-1 K-1)。引人注目的是,GaInTe2中孤对电子和小原子的协同作用放大了声子散射,实现了比InTe (0.64 W m-1 K-1)更低的κL (~ 0.58 W m-1 K-1)。这项工作阐明了ABX2系统中的竞争机制,并为具有超低导热性的工程材料建立了双重设计策略-利用孤对电子和原子尺寸不匹配。
Lone pair electrons and undersized atoms mediate anomalous thermal conductivity in TlSe-type ABX2 compounds
Crystalline materials with intrinsically low lattice thermal conductivity (κL) are crucial for thermoelectric and thermal insulating applications. In recent years, TlSe-type ABX2 compounds have attracted considerable attention owing to their ultralow κL, typically attributed to rattling cations with lone pair electrons. However, a systematic understanding of the microscopic mechanisms governing thermal transport trends in these structures remains elusive. Combining first-principles calculations and analysis, we reveal distinct and synergistic roles of lone pair electrons and atomic size effects in suppressing κL. Counterintuitively, introducing lone pair electrons (A = Ga, In, Tl) reverses conventional mass-dependent trends, increasing κL with average atomic mass due to enhanced anharmonicity related to lone pair activity evidenced by large Grüneisen parameters and reduced phonon lifetimes. Conversely, in systems lacking lone pairs, atomic size effects dominate; undersized atoms (e.g., Na+ in NaInTe2) induce strong anharmonicity, yielding lower κL (∼1.33 W m−1 K−1) than heavier analogs (RbInTe2, ∼1.45 W m−1 K−1). Strikingly, the synergy of lone pair electrons and undersized atoms in GaInTe2 amplifies phonon scattering, achieving lower κL (∼0.58 W m−1 K−1) than that of InTe (∼0.64 W m−1 K−1). This work elucidates the competing mechanisms in ABX2 systems and establishes a dual design strategy—leveraging lone pair electrons and atomic size mismatch—for engineering materials with intrinsically ultralow thermal conductivity.
期刊介绍:
Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.