抗菌素耐药性:酶、蛋白质和计算资源。

IF 2.8 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Saurav Kumar Mishra, Kanchan Sharma, John J Georrge
{"title":"抗菌素耐药性:酶、蛋白质和计算资源。","authors":"Saurav Kumar Mishra, Kanchan Sharma, John J Georrge","doi":"10.2174/0113816128415482250721112427","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial resistance (AMR) is an important health concern rooted in antibiotic misuse and overuse, resulting in drug-resistant bacteria. However, resistance to these antimicrobials developed as soon as they were administered. Several variables lead to the progression of antimicrobial resistance (AMR), making it a multifaceted challenge for healthcare systems worldwide, such as erroneous diagnosis, inappropriate prescription, incomplete treatment, and many more. Getting an in-depth idea about the mechanism underlying AMR development is essential to overcome this. This review aims to provide information on how various enzymes or proteins aid in the antimicrobial resistance mechanisms and also highlight the clinical perspective of AMR, emphasizing its growing impact on patient outcomes, and incorporate the latest recent data from the World Health Organisation (WHO), underscoring the global urgency of the AMR crisis, with specific attention to trends observed in recent years. Additionally, it is intended to provide ideas about inhibitors that can inhibit the mechanism of antibiotic resistance and also to provide an idea about numerous computational resources available that can be employed to predict genes and/or proteins and enzymes involved in various antibiotic resistance mechanisms.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antimicrobial Resistance: Enzymes, Proteins, and Computational Resources.\",\"authors\":\"Saurav Kumar Mishra, Kanchan Sharma, John J Georrge\",\"doi\":\"10.2174/0113816128415482250721112427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antimicrobial resistance (AMR) is an important health concern rooted in antibiotic misuse and overuse, resulting in drug-resistant bacteria. However, resistance to these antimicrobials developed as soon as they were administered. Several variables lead to the progression of antimicrobial resistance (AMR), making it a multifaceted challenge for healthcare systems worldwide, such as erroneous diagnosis, inappropriate prescription, incomplete treatment, and many more. Getting an in-depth idea about the mechanism underlying AMR development is essential to overcome this. This review aims to provide information on how various enzymes or proteins aid in the antimicrobial resistance mechanisms and also highlight the clinical perspective of AMR, emphasizing its growing impact on patient outcomes, and incorporate the latest recent data from the World Health Organisation (WHO), underscoring the global urgency of the AMR crisis, with specific attention to trends observed in recent years. Additionally, it is intended to provide ideas about inhibitors that can inhibit the mechanism of antibiotic resistance and also to provide an idea about numerous computational resources available that can be employed to predict genes and/or proteins and enzymes involved in various antibiotic resistance mechanisms.</p>\",\"PeriodicalId\":10845,\"journal\":{\"name\":\"Current pharmaceutical design\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current pharmaceutical design\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113816128415482250721112427\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113816128415482250721112427","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

抗菌素耐药性(AMR)是一个重要的健康问题,其根源在于抗生素滥用和过度使用,导致耐药细菌。然而,这些抗菌素一经使用就产生了耐药性。一些变量导致抗菌素耐药性(AMR)的发展,使其成为全球卫生保健系统面临的多方面挑战,例如错误诊断、不适当的处方、不完整的治疗等等。深入了解AMR发展背后的机制对于克服这一点至关重要。本综述旨在提供有关各种酶或蛋白质如何帮助抗微生物药物耐药性机制的信息,并强调抗菌素耐药性的临床前景,强调其对患者预后的影响越来越大,并纳入世界卫生组织(WHO)的最新数据,强调抗菌素耐药性危机的全球紧迫性,并特别关注近年来观察到的趋势。此外,它的目的是提供关于抑制剂可以抑制抗生素耐药机制的想法,也提供了一个关于大量可用的计算资源的想法,这些资源可以用来预测参与各种抗生素耐药机制的基因和/或蛋白质和酶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Antimicrobial Resistance: Enzymes, Proteins, and Computational Resources.

Antimicrobial resistance (AMR) is an important health concern rooted in antibiotic misuse and overuse, resulting in drug-resistant bacteria. However, resistance to these antimicrobials developed as soon as they were administered. Several variables lead to the progression of antimicrobial resistance (AMR), making it a multifaceted challenge for healthcare systems worldwide, such as erroneous diagnosis, inappropriate prescription, incomplete treatment, and many more. Getting an in-depth idea about the mechanism underlying AMR development is essential to overcome this. This review aims to provide information on how various enzymes or proteins aid in the antimicrobial resistance mechanisms and also highlight the clinical perspective of AMR, emphasizing its growing impact on patient outcomes, and incorporate the latest recent data from the World Health Organisation (WHO), underscoring the global urgency of the AMR crisis, with specific attention to trends observed in recent years. Additionally, it is intended to provide ideas about inhibitors that can inhibit the mechanism of antibiotic resistance and also to provide an idea about numerous computational resources available that can be employed to predict genes and/or proteins and enzymes involved in various antibiotic resistance mechanisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
302
审稿时长
2 months
期刊介绍: Current Pharmaceutical Design publishes timely in-depth reviews and research articles from leading pharmaceutical researchers in the field, covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area guest edited by an acknowledged authority in the field. Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design including: medicinal chemistry, pharmacology, drug targets and disease mechanism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信