Saurav Kumar Mishra, Kanchan Sharma, John J Georrge
{"title":"抗菌素耐药性:酶、蛋白质和计算资源。","authors":"Saurav Kumar Mishra, Kanchan Sharma, John J Georrge","doi":"10.2174/0113816128415482250721112427","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial resistance (AMR) is an important health concern rooted in antibiotic misuse and overuse, resulting in drug-resistant bacteria. However, resistance to these antimicrobials developed as soon as they were administered. Several variables lead to the progression of antimicrobial resistance (AMR), making it a multifaceted challenge for healthcare systems worldwide, such as erroneous diagnosis, inappropriate prescription, incomplete treatment, and many more. Getting an in-depth idea about the mechanism underlying AMR development is essential to overcome this. This review aims to provide information on how various enzymes or proteins aid in the antimicrobial resistance mechanisms and also highlight the clinical perspective of AMR, emphasizing its growing impact on patient outcomes, and incorporate the latest recent data from the World Health Organisation (WHO), underscoring the global urgency of the AMR crisis, with specific attention to trends observed in recent years. Additionally, it is intended to provide ideas about inhibitors that can inhibit the mechanism of antibiotic resistance and also to provide an idea about numerous computational resources available that can be employed to predict genes and/or proteins and enzymes involved in various antibiotic resistance mechanisms.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antimicrobial Resistance: Enzymes, Proteins, and Computational Resources.\",\"authors\":\"Saurav Kumar Mishra, Kanchan Sharma, John J Georrge\",\"doi\":\"10.2174/0113816128415482250721112427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antimicrobial resistance (AMR) is an important health concern rooted in antibiotic misuse and overuse, resulting in drug-resistant bacteria. However, resistance to these antimicrobials developed as soon as they were administered. Several variables lead to the progression of antimicrobial resistance (AMR), making it a multifaceted challenge for healthcare systems worldwide, such as erroneous diagnosis, inappropriate prescription, incomplete treatment, and many more. Getting an in-depth idea about the mechanism underlying AMR development is essential to overcome this. This review aims to provide information on how various enzymes or proteins aid in the antimicrobial resistance mechanisms and also highlight the clinical perspective of AMR, emphasizing its growing impact on patient outcomes, and incorporate the latest recent data from the World Health Organisation (WHO), underscoring the global urgency of the AMR crisis, with specific attention to trends observed in recent years. Additionally, it is intended to provide ideas about inhibitors that can inhibit the mechanism of antibiotic resistance and also to provide an idea about numerous computational resources available that can be employed to predict genes and/or proteins and enzymes involved in various antibiotic resistance mechanisms.</p>\",\"PeriodicalId\":10845,\"journal\":{\"name\":\"Current pharmaceutical design\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current pharmaceutical design\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113816128415482250721112427\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113816128415482250721112427","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Antimicrobial Resistance: Enzymes, Proteins, and Computational Resources.
Antimicrobial resistance (AMR) is an important health concern rooted in antibiotic misuse and overuse, resulting in drug-resistant bacteria. However, resistance to these antimicrobials developed as soon as they were administered. Several variables lead to the progression of antimicrobial resistance (AMR), making it a multifaceted challenge for healthcare systems worldwide, such as erroneous diagnosis, inappropriate prescription, incomplete treatment, and many more. Getting an in-depth idea about the mechanism underlying AMR development is essential to overcome this. This review aims to provide information on how various enzymes or proteins aid in the antimicrobial resistance mechanisms and also highlight the clinical perspective of AMR, emphasizing its growing impact on patient outcomes, and incorporate the latest recent data from the World Health Organisation (WHO), underscoring the global urgency of the AMR crisis, with specific attention to trends observed in recent years. Additionally, it is intended to provide ideas about inhibitors that can inhibit the mechanism of antibiotic resistance and also to provide an idea about numerous computational resources available that can be employed to predict genes and/or proteins and enzymes involved in various antibiotic resistance mechanisms.
期刊介绍:
Current Pharmaceutical Design publishes timely in-depth reviews and research articles from leading pharmaceutical researchers in the field, covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area guest edited by an acknowledged authority in the field.
Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design including: medicinal chemistry, pharmacology, drug targets and disease mechanism.