原位掺杂和脉冲激光熔融法制备超掺n型Ge和Si0.15Ge0.85薄膜的热稳定性。

IF 5.1 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Marco Faverzani, Giulia Maria Spataro, Davide Impelluso, Stefano Calcaterra, Enrico Di Russo, Michele Magnozzi, Francesco Bisio, Maurizio Canepa, Paolo Biagioni, Giovanni Isella, Enrico Napolitani and Jacopo Frigerio
{"title":"原位掺杂和脉冲激光熔融法制备超掺n型Ge和Si0.15Ge0.85薄膜的热稳定性。","authors":"Marco Faverzani, Giulia Maria Spataro, Davide Impelluso, Stefano Calcaterra, Enrico Di Russo, Michele Magnozzi, Francesco Bisio, Maurizio Canepa, Paolo Biagioni, Giovanni Isella, Enrico Napolitani and Jacopo Frigerio","doi":"10.1039/D5TC02390D","DOIUrl":null,"url":null,"abstract":"<p >The thermal stability of hyper-doped Ge-on-Si and SiGe-on-Si films featuring carrier concentrations exceeding 5 × 10<small><sup>19</sup></small> cm<small><sup>−3</sup></small> obtained by <em>in situ</em> doping and pulsed laser melting has been studied. The deactivation kinetics was systematically analysed through rapid thermal annealing, reflection spectroscopy and electrical characterization. The results demonstrate that, while hyper-doped Ge films exhibit rapid deactivation at temperatures above 300 °C, SiGe offers enhanced thermal stability. Surface morphology analysis confirms the preservation of flatness after pulsed laser melting and thermal treatments, suggesting possible exploitation of these materials as substrates for further growth. These findings provide insights into optimizing hyper-doped material platforms for mid-infrared photonic devices and advanced semiconductor applications, emphasizing the trade-offs between the initial carrier concentration and the thermal resilience.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 35","pages":" 18276-18285"},"PeriodicalIF":5.1000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12320976/pdf/","citationCount":"0","resultStr":"{\"title\":\"Thermal stability of hyper-doped n-type Ge and Si0.15Ge0.85 epilayers obtained by in situ doping and pulsed laser melting\",\"authors\":\"Marco Faverzani, Giulia Maria Spataro, Davide Impelluso, Stefano Calcaterra, Enrico Di Russo, Michele Magnozzi, Francesco Bisio, Maurizio Canepa, Paolo Biagioni, Giovanni Isella, Enrico Napolitani and Jacopo Frigerio\",\"doi\":\"10.1039/D5TC02390D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The thermal stability of hyper-doped Ge-on-Si and SiGe-on-Si films featuring carrier concentrations exceeding 5 × 10<small><sup>19</sup></small> cm<small><sup>−3</sup></small> obtained by <em>in situ</em> doping and pulsed laser melting has been studied. The deactivation kinetics was systematically analysed through rapid thermal annealing, reflection spectroscopy and electrical characterization. The results demonstrate that, while hyper-doped Ge films exhibit rapid deactivation at temperatures above 300 °C, SiGe offers enhanced thermal stability. Surface morphology analysis confirms the preservation of flatness after pulsed laser melting and thermal treatments, suggesting possible exploitation of these materials as substrates for further growth. These findings provide insights into optimizing hyper-doped material platforms for mid-infrared photonic devices and advanced semiconductor applications, emphasizing the trade-offs between the initial carrier concentration and the thermal resilience.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":\" 35\",\"pages\":\" 18276-18285\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12320976/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc02390d\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc02390d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了原位掺杂和脉冲激光熔化制备的载流子浓度超过5 × 1019 cm-3的超掺杂Ge-on-Si和SiGe-on-Si薄膜的热稳定性。通过快速退火、反射光谱和电学表征等方法系统地分析了失活动力学。结果表明,虽然超掺杂Ge薄膜在300°C以上的温度下表现出快速失活,但SiGe具有增强的热稳定性。表面形貌分析证实了脉冲激光熔化和热处理后的平整度保留,表明这些材料可能被开发为进一步生长的基质。这些发现为优化中红外光子器件和先进半导体应用的超掺杂材料平台提供了见解,强调了初始载流子浓度和热弹性之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Thermal stability of hyper-doped n-type Ge and Si0.15Ge0.85 epilayers obtained by in situ doping and pulsed laser melting

Thermal stability of hyper-doped n-type Ge and Si0.15Ge0.85 epilayers obtained by in situ doping and pulsed laser melting

The thermal stability of hyper-doped Ge-on-Si and SiGe-on-Si films featuring carrier concentrations exceeding 5 × 1019 cm−3 obtained by in situ doping and pulsed laser melting has been studied. The deactivation kinetics was systematically analysed through rapid thermal annealing, reflection spectroscopy and electrical characterization. The results demonstrate that, while hyper-doped Ge films exhibit rapid deactivation at temperatures above 300 °C, SiGe offers enhanced thermal stability. Surface morphology analysis confirms the preservation of flatness after pulsed laser melting and thermal treatments, suggesting possible exploitation of these materials as substrates for further growth. These findings provide insights into optimizing hyper-doped material platforms for mid-infrared photonic devices and advanced semiconductor applications, emphasizing the trade-offs between the initial carrier concentration and the thermal resilience.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信