利用大脑时间序列诊断自闭症的深度学习模型。

IF 2.8 3区 医学 Q2 NEUROSCIENCES
Neuroscience Pub Date : 2025-09-13 Epub Date: 2025-08-05 DOI:10.1016/j.neuroscience.2025.08.001
Xianchen Wang, Can Pei, Jianbiao He, Jinyang Xu
{"title":"利用大脑时间序列诊断自闭症的深度学习模型。","authors":"Xianchen Wang, Can Pei, Jianbiao He, Jinyang Xu","doi":"10.1016/j.neuroscience.2025.08.001","DOIUrl":null,"url":null,"abstract":"<p><p>The early identification of autism is especially critical as it can significantly enhance the effectiveness of intervention strategies. However, the recognition task remains challenging due to the subtle differences between ASD patients and neurotypical individuals. The presented approach leverages a hybrid model that combines Long Short-Term Memory (LSTM) networks with an Attention mechanism, enabling the extraction of both long-term and short-term features for more accurate autism diagnosis. Additionally, we integrate a residual block with channel Attention to enhance feature fusion and mitigate the risk of network degradation. Innovatively, we introduce a sliding window-based data preprocessing method alongside a voting strategy and validate the framework using subject-level 5-fold cross-validation to ensure generalizability across data splits. Our model was evaluated on the Region of Interest (ROI) time series dataset from the Autism Brain Imaging Data Exchange (ABIDE), achieving 73.1 % accuracy on the DOS brain atlas and 81.1 % on the HO brain atlas-outperforming baseline models. Moreover, we constructed brain functional connectivity topological structures for both ASD patients and healthy individuals, providing valuable resources for future autism research.</p>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":" ","pages":"120-135"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A deep learning model for diagnosing autism using brain time series.\",\"authors\":\"Xianchen Wang, Can Pei, Jianbiao He, Jinyang Xu\",\"doi\":\"10.1016/j.neuroscience.2025.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The early identification of autism is especially critical as it can significantly enhance the effectiveness of intervention strategies. However, the recognition task remains challenging due to the subtle differences between ASD patients and neurotypical individuals. The presented approach leverages a hybrid model that combines Long Short-Term Memory (LSTM) networks with an Attention mechanism, enabling the extraction of both long-term and short-term features for more accurate autism diagnosis. Additionally, we integrate a residual block with channel Attention to enhance feature fusion and mitigate the risk of network degradation. Innovatively, we introduce a sliding window-based data preprocessing method alongside a voting strategy and validate the framework using subject-level 5-fold cross-validation to ensure generalizability across data splits. Our model was evaluated on the Region of Interest (ROI) time series dataset from the Autism Brain Imaging Data Exchange (ABIDE), achieving 73.1 % accuracy on the DOS brain atlas and 81.1 % on the HO brain atlas-outperforming baseline models. Moreover, we constructed brain functional connectivity topological structures for both ASD patients and healthy individuals, providing valuable resources for future autism research.</p>\",\"PeriodicalId\":19142,\"journal\":{\"name\":\"Neuroscience\",\"volume\":\" \",\"pages\":\"120-135\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neuroscience.2025.08.001\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuroscience.2025.08.001","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

自闭症的早期识别尤其重要,因为它可以显著提高干预策略的有效性。然而,由于ASD患者和神经正常个体之间的细微差异,识别任务仍然具有挑战性。该方法利用长短期记忆(LSTM)网络与注意机制相结合的混合模型,能够同时提取长期和短期特征,从而更准确地诊断自闭症。此外,我们将残差块与信道注意集成在一起,以增强特征融合并降低网络退化的风险。创新地,我们引入了基于滑动窗口的数据预处理方法以及投票策略,并使用主题级别的5倍交叉验证来验证框架,以确保跨数据分割的通用性。我们的模型在来自自闭症脑成像数据交换(ABIDE)的感兴趣区域(ROI)时间序列数据集上进行了评估,在DOS脑图谱上实现了73.1 %的准确率,在HO脑图谱上实现了81.1 %的准确率,优于基线模型。此外,我们构建了ASD患者和健康个体的脑功能连接拓扑结构,为未来的自闭症研究提供了宝贵的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A deep learning model for diagnosing autism using brain time series.

The early identification of autism is especially critical as it can significantly enhance the effectiveness of intervention strategies. However, the recognition task remains challenging due to the subtle differences between ASD patients and neurotypical individuals. The presented approach leverages a hybrid model that combines Long Short-Term Memory (LSTM) networks with an Attention mechanism, enabling the extraction of both long-term and short-term features for more accurate autism diagnosis. Additionally, we integrate a residual block with channel Attention to enhance feature fusion and mitigate the risk of network degradation. Innovatively, we introduce a sliding window-based data preprocessing method alongside a voting strategy and validate the framework using subject-level 5-fold cross-validation to ensure generalizability across data splits. Our model was evaluated on the Region of Interest (ROI) time series dataset from the Autism Brain Imaging Data Exchange (ABIDE), achieving 73.1 % accuracy on the DOS brain atlas and 81.1 % on the HO brain atlas-outperforming baseline models. Moreover, we constructed brain functional connectivity topological structures for both ASD patients and healthy individuals, providing valuable resources for future autism research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuroscience
Neuroscience 医学-神经科学
CiteScore
6.20
自引率
0.00%
发文量
394
审稿时长
52 days
期刊介绍: Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信