Albert Whata, Justine B Nasejje, Najmeh Nakhaei Rad, Tshilidzi Mulaudzi, Ding-Geng Chen
{"title":"具有时变协变量的生存数据的深度伪神经网络自适应与评价。","authors":"Albert Whata, Justine B Nasejje, Najmeh Nakhaei Rad, Tshilidzi Mulaudzi, Ding-Geng Chen","doi":"10.1080/02664763.2024.2444649","DOIUrl":null,"url":null,"abstract":"<p><p>The Extended Cox model provides an alternative to the proportional hazard Cox model for modelling data including time-varying covariates. Incorporating time-varying covariates is particularly beneficial when dealing with survival data, as it can improve the precision of survival function estimation. Deep learning methods, in particular, the Deep-pseudo survival neural network (DSNN) model have demonstrated a high potential for accurately predicting right-censored survival data when dealing with time-invariant variables. The DSNN's ability to discretise survival times makes it a natural choice for extending its application to scenarios involving time-varying covariates. This study adapts the DSNN to predict survival probabilities for data with time-varying covariates. To demonstrate this, we considered two scenarios: significant and non-significant time-varying covariates. For significant covariates, the Brier scores were below 0.25 at all considered specific time points, while, in the non-significant case, the Brier scores were above 0.25. The results illustrate that the DSNN performed comparably to the extended Cox, the Dynamic-DeepHit and mulitivariate joint models and on the simulated data. A real-world data application further confirms the predictive potential of the DSNN model in modelling survival data with time-varying covariates.</p>","PeriodicalId":15239,"journal":{"name":"Journal of Applied Statistics","volume":"52 10","pages":"1847-1870"},"PeriodicalIF":1.1000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12320266/pdf/","citationCount":"0","resultStr":"{\"title\":\"Adapting and evaluating deep-pseudo neural network for survival data with time-varying covariates.\",\"authors\":\"Albert Whata, Justine B Nasejje, Najmeh Nakhaei Rad, Tshilidzi Mulaudzi, Ding-Geng Chen\",\"doi\":\"10.1080/02664763.2024.2444649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Extended Cox model provides an alternative to the proportional hazard Cox model for modelling data including time-varying covariates. Incorporating time-varying covariates is particularly beneficial when dealing with survival data, as it can improve the precision of survival function estimation. Deep learning methods, in particular, the Deep-pseudo survival neural network (DSNN) model have demonstrated a high potential for accurately predicting right-censored survival data when dealing with time-invariant variables. The DSNN's ability to discretise survival times makes it a natural choice for extending its application to scenarios involving time-varying covariates. This study adapts the DSNN to predict survival probabilities for data with time-varying covariates. To demonstrate this, we considered two scenarios: significant and non-significant time-varying covariates. For significant covariates, the Brier scores were below 0.25 at all considered specific time points, while, in the non-significant case, the Brier scores were above 0.25. The results illustrate that the DSNN performed comparably to the extended Cox, the Dynamic-DeepHit and mulitivariate joint models and on the simulated data. A real-world data application further confirms the predictive potential of the DSNN model in modelling survival data with time-varying covariates.</p>\",\"PeriodicalId\":15239,\"journal\":{\"name\":\"Journal of Applied Statistics\",\"volume\":\"52 10\",\"pages\":\"1847-1870\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12320266/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/02664763.2024.2444649\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/02664763.2024.2444649","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Adapting and evaluating deep-pseudo neural network for survival data with time-varying covariates.
The Extended Cox model provides an alternative to the proportional hazard Cox model for modelling data including time-varying covariates. Incorporating time-varying covariates is particularly beneficial when dealing with survival data, as it can improve the precision of survival function estimation. Deep learning methods, in particular, the Deep-pseudo survival neural network (DSNN) model have demonstrated a high potential for accurately predicting right-censored survival data when dealing with time-invariant variables. The DSNN's ability to discretise survival times makes it a natural choice for extending its application to scenarios involving time-varying covariates. This study adapts the DSNN to predict survival probabilities for data with time-varying covariates. To demonstrate this, we considered two scenarios: significant and non-significant time-varying covariates. For significant covariates, the Brier scores were below 0.25 at all considered specific time points, while, in the non-significant case, the Brier scores were above 0.25. The results illustrate that the DSNN performed comparably to the extended Cox, the Dynamic-DeepHit and mulitivariate joint models and on the simulated data. A real-world data application further confirms the predictive potential of the DSNN model in modelling survival data with time-varying covariates.
期刊介绍:
Journal of Applied Statistics provides a forum for communication between both applied statisticians and users of applied statistical techniques across a wide range of disciplines. These areas include business, computing, economics, ecology, education, management, medicine, operational research and sociology, but papers from other areas are also considered. The editorial policy is to publish rigorous but clear and accessible papers on applied techniques. Purely theoretical papers are avoided but those on theoretical developments which clearly demonstrate significant applied potential are welcomed. Each paper is submitted to at least two independent referees.