氮化硼纳米片保留功能化策略增强范德华异质结构的热传递

IF 9.7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Chenghao Diao, Zhen Yang, Yuanyuan Duan
{"title":"氮化硼纳米片保留功能化策略增强范德华异质结构的热传递","authors":"Chenghao Diao,&nbsp;Zhen Yang,&nbsp;Yuanyuan Duan","doi":"10.1016/j.mtphys.2025.101827","DOIUrl":null,"url":null,"abstract":"<div><div>Hexagonal boron nitride nanosheets (BNNS) are promising thermal interface materials (TIMs) for next-generation chip cooling, benefiting from their exceptional thermal conductivity and insulation properties. However, their practical deployment is hindered by the large thermal contact resistance (TCR) at BNNS/substrate interfaces. Previously proposed methods to reduce TCR often compromise the chemical integrity of BNNS, resulting in degraded performance. To overcome this challenge, we introduce a BNNS-preserving approach that involves functionalization strategy on the adjacent substrate—represented here by graphene—to improve interfacial thermal conductance (<em>G</em>) without disrupting the BNNS lattice. <em>G</em> across the BNNS/functionalized-graphene hetero-interface is enhanced by over 800 % compared to the pristine BNNS/graphene interface, reaching up to 1503 MW m<sup>−2</sup> K<sup>−1</sup>, based on molecular dynamics (MD) simulations. We further employ an MD-based method to quantify interfacial coupling strength, elucidating the mechanism behind the enhancement of <em>G</em> by functionalization. This work offers a promising pathway for integrating BNNS into next-generation chip cooling TIMs.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"57 ","pages":"Article 101827"},"PeriodicalIF":9.7000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boron nitride nanosheets preserving functionalization strategy for enhancing thermal transport across van der Waals heterostructures\",\"authors\":\"Chenghao Diao,&nbsp;Zhen Yang,&nbsp;Yuanyuan Duan\",\"doi\":\"10.1016/j.mtphys.2025.101827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hexagonal boron nitride nanosheets (BNNS) are promising thermal interface materials (TIMs) for next-generation chip cooling, benefiting from their exceptional thermal conductivity and insulation properties. However, their practical deployment is hindered by the large thermal contact resistance (TCR) at BNNS/substrate interfaces. Previously proposed methods to reduce TCR often compromise the chemical integrity of BNNS, resulting in degraded performance. To overcome this challenge, we introduce a BNNS-preserving approach that involves functionalization strategy on the adjacent substrate—represented here by graphene—to improve interfacial thermal conductance (<em>G</em>) without disrupting the BNNS lattice. <em>G</em> across the BNNS/functionalized-graphene hetero-interface is enhanced by over 800 % compared to the pristine BNNS/graphene interface, reaching up to 1503 MW m<sup>−2</sup> K<sup>−1</sup>, based on molecular dynamics (MD) simulations. We further employ an MD-based method to quantify interfacial coupling strength, elucidating the mechanism behind the enhancement of <em>G</em> by functionalization. This work offers a promising pathway for integrating BNNS into next-generation chip cooling TIMs.</div></div>\",\"PeriodicalId\":18253,\"journal\":{\"name\":\"Materials Today Physics\",\"volume\":\"57 \",\"pages\":\"Article 101827\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S254252932500183X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S254252932500183X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

六方氮化硼纳米片(BNNS)由于其优异的导热性和绝缘性,是下一代芯片冷却领域中很有前途的热界面材料。然而,它们的实际部署受到BNNS/衬底界面处较大的热接触电阻(TCR)的阻碍。以前提出的降低TCR的方法往往会损害BNNS的化学完整性,导致性能下降。为了克服这一挑战,我们引入了一种保留BNNS的方法,该方法涉及相邻基板上的功能化策略,在不破坏BNNS晶格的情况下提高界面热导率(G)。根据分子动力学(MD)模拟,与原始的BNNS/石墨烯界面相比,BNNS/功能化石墨烯异质界面上的G增强了800%以上,达到1503 MW·m-2·K-1。我们进一步采用了一种基于md的方法来量化界面耦合强度,阐明了功能化增强G的机制。这项工作为将BNNS集成到下一代芯片冷却TIMs中提供了一条有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boron nitride nanosheets preserving functionalization strategy for enhancing thermal transport across van der Waals heterostructures
Hexagonal boron nitride nanosheets (BNNS) are promising thermal interface materials (TIMs) for next-generation chip cooling, benefiting from their exceptional thermal conductivity and insulation properties. However, their practical deployment is hindered by the large thermal contact resistance (TCR) at BNNS/substrate interfaces. Previously proposed methods to reduce TCR often compromise the chemical integrity of BNNS, resulting in degraded performance. To overcome this challenge, we introduce a BNNS-preserving approach that involves functionalization strategy on the adjacent substrate—represented here by graphene—to improve interfacial thermal conductance (G) without disrupting the BNNS lattice. G across the BNNS/functionalized-graphene hetero-interface is enhanced by over 800 % compared to the pristine BNNS/graphene interface, reaching up to 1503 MW m−2 K−1, based on molecular dynamics (MD) simulations. We further employ an MD-based method to quantify interfacial coupling strength, elucidating the mechanism behind the enhancement of G by functionalization. This work offers a promising pathway for integrating BNNS into next-generation chip cooling TIMs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信