{"title":"基于交错物理的深度学习框架作为微结构小疲劳裂纹扩展模拟的新循环跳跃方法","authors":"Vignesh Babu Rao, Ashley D. Spear","doi":"10.1038/s41524-025-01741-z","DOIUrl":null,"url":null,"abstract":"<p>Conventional fracture mechanics asserts that the relevant physics governing small crack growth occurs near the crack front. However, for fatigue, computing these physics for each crack-growth increment over the entire microstructurally small crack regime is computationally intractable. Properly trained deep-learning surrogate models can massively accelerate fatigue crack-growth predictions by virtually propagating an initial crack using micromechanical fields corresponding to just the initially cracked microstructure. As the predicted crack front advances, however, the fields no longer reflect relevant near-crack-front physics, leading to error and uncertainty accumulation. To address this, we present an interleaved physics-based deep-learning (PBDL) framework, where updates to the crack representation in the physics-based model are triggered intermittently using model uncertainty, thereby updating micromechanical fields passed to the deep-learning model. We show that this framework, representing a novel cycle-jumping approach, effectively limits error accumulation in history-dependent fatigue crack evolution and forms a template for other time-series applications in materials.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"126 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An interleaved physics-based deep-learning framework as a new cycle jumping approach for microstructurally small fatigue crack growth simulations\",\"authors\":\"Vignesh Babu Rao, Ashley D. Spear\",\"doi\":\"10.1038/s41524-025-01741-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Conventional fracture mechanics asserts that the relevant physics governing small crack growth occurs near the crack front. However, for fatigue, computing these physics for each crack-growth increment over the entire microstructurally small crack regime is computationally intractable. Properly trained deep-learning surrogate models can massively accelerate fatigue crack-growth predictions by virtually propagating an initial crack using micromechanical fields corresponding to just the initially cracked microstructure. As the predicted crack front advances, however, the fields no longer reflect relevant near-crack-front physics, leading to error and uncertainty accumulation. To address this, we present an interleaved physics-based deep-learning (PBDL) framework, where updates to the crack representation in the physics-based model are triggered intermittently using model uncertainty, thereby updating micromechanical fields passed to the deep-learning model. We show that this framework, representing a novel cycle-jumping approach, effectively limits error accumulation in history-dependent fatigue crack evolution and forms a template for other time-series applications in materials.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"126 1\",\"pages\":\"\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01741-z\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01741-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
An interleaved physics-based deep-learning framework as a new cycle jumping approach for microstructurally small fatigue crack growth simulations
Conventional fracture mechanics asserts that the relevant physics governing small crack growth occurs near the crack front. However, for fatigue, computing these physics for each crack-growth increment over the entire microstructurally small crack regime is computationally intractable. Properly trained deep-learning surrogate models can massively accelerate fatigue crack-growth predictions by virtually propagating an initial crack using micromechanical fields corresponding to just the initially cracked microstructure. As the predicted crack front advances, however, the fields no longer reflect relevant near-crack-front physics, leading to error and uncertainty accumulation. To address this, we present an interleaved physics-based deep-learning (PBDL) framework, where updates to the crack representation in the physics-based model are triggered intermittently using model uncertainty, thereby updating micromechanical fields passed to the deep-learning model. We show that this framework, representing a novel cycle-jumping approach, effectively limits error accumulation in history-dependent fatigue crack evolution and forms a template for other time-series applications in materials.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.