从量子连续电化学理论理解溶液中钛酸钡的压电催化作用

IF 11.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Xiangyu Zhu, Cheng Zhan, Erjun Kan
{"title":"从量子连续电化学理论理解溶液中钛酸钡的压电催化作用","authors":"Xiangyu Zhu, Cheng Zhan, Erjun Kan","doi":"10.1038/s41524-025-01746-8","DOIUrl":null,"url":null,"abstract":"<p>Piezocatalysis has shown great potential in non-invasive medical treatment and pollutant removal. Since piezocatalysis usually occurs in solution, capturing the effect of the solution is essential in mechanistic study. However, conventional theoretical methods cannot handle the interaction between the solution and the piezocatalysts, which leads to a huge discrepancy between the simulated scenarios and the actual working condition of piezocatalysis. Here, we first propose the quantum-continuum-electrochemical (QCE) method to elucidate the general mechanism of piezocatalysis in solution. Taking barium titanate (BaTiO<sub>3</sub>, BTO) as an example, our QCE method can directly calculate the redox potential of the piezocatalyst and quantitatively predict of how material and solution properties modulate piezocatalytic activity. Our work provides a brand-new theoretical framework to dissect the piezocatalysis in solution, which not only advances the mechanistic understanding of piezocatalysis but also brings guidance to the experimental design of piezocatalysts for non-invasive medical treatment.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"733 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding piezocatalysis of barium titanate in solution from quantum-continuum-electrochemical theory\",\"authors\":\"Xiangyu Zhu, Cheng Zhan, Erjun Kan\",\"doi\":\"10.1038/s41524-025-01746-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Piezocatalysis has shown great potential in non-invasive medical treatment and pollutant removal. Since piezocatalysis usually occurs in solution, capturing the effect of the solution is essential in mechanistic study. However, conventional theoretical methods cannot handle the interaction between the solution and the piezocatalysts, which leads to a huge discrepancy between the simulated scenarios and the actual working condition of piezocatalysis. Here, we first propose the quantum-continuum-electrochemical (QCE) method to elucidate the general mechanism of piezocatalysis in solution. Taking barium titanate (BaTiO<sub>3</sub>, BTO) as an example, our QCE method can directly calculate the redox potential of the piezocatalyst and quantitatively predict of how material and solution properties modulate piezocatalytic activity. Our work provides a brand-new theoretical framework to dissect the piezocatalysis in solution, which not only advances the mechanistic understanding of piezocatalysis but also brings guidance to the experimental design of piezocatalysts for non-invasive medical treatment.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"733 1\",\"pages\":\"\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01746-8\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01746-8","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

压电催化在无创医疗和污染物去除方面显示出巨大的潜力。由于压电催化通常发生在溶液中,因此在机理研究中捕捉溶液的作用是必不可少的。然而,传统的理论方法无法处理溶液与压电催化剂之间的相互作用,导致模拟场景与压电催化的实际工作状态存在巨大差异。本文首次提出了量子连续电化学(QCE)方法来阐明溶液中压电催化的一般机理。以钛酸钡(BaTiO3, BTO)为例,我们的QCE方法可以直接计算出压电催化剂的氧化还原电位,并定量预测材料和溶液性质如何调节压电催化活性。我们的工作为剖析溶液中压电催化提供了一个全新的理论框架,不仅促进了对压电催化机理的认识,而且对用于无创医疗的压电催化剂的实验设计具有指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Understanding piezocatalysis of barium titanate in solution from quantum-continuum-electrochemical theory

Understanding piezocatalysis of barium titanate in solution from quantum-continuum-electrochemical theory

Piezocatalysis has shown great potential in non-invasive medical treatment and pollutant removal. Since piezocatalysis usually occurs in solution, capturing the effect of the solution is essential in mechanistic study. However, conventional theoretical methods cannot handle the interaction between the solution and the piezocatalysts, which leads to a huge discrepancy between the simulated scenarios and the actual working condition of piezocatalysis. Here, we first propose the quantum-continuum-electrochemical (QCE) method to elucidate the general mechanism of piezocatalysis in solution. Taking barium titanate (BaTiO3, BTO) as an example, our QCE method can directly calculate the redox potential of the piezocatalyst and quantitatively predict of how material and solution properties modulate piezocatalytic activity. Our work provides a brand-new theoretical framework to dissect the piezocatalysis in solution, which not only advances the mechanistic understanding of piezocatalysis but also brings guidance to the experimental design of piezocatalysts for non-invasive medical treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信